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Spatial signature estimation is a problem encountered in several applications in signal processing such 
as mobile communications, sonar, radar, astronomy and seismology. In this paper, we propose higher-
order tensor methods to solve the blind spatial signature estimation problem using planar arrays. 
By assuming that sources’ powers vary between successive time blocks, we recast the spatial and 
spatiotemporal covariance models for the received data as third-order PARATUCK2 and fourth-order 
Tucker4 tensor decompositions, respectively. Firstly, by exploiting the multilinear algebraic structure 
of the proposed tensor models, new iterative algorithms are formulated to blindly estimate the 
spatial signatures. Secondly, in order to achieve a better spatial resolution, we propose an expanded 
form of spatial smoothing that returns extra spatial dimensions in comparison with the traditional 
approaches. Additionally, by exploiting the higher-order structure of the resulting expanded tensor 
model, a multilinear noise reduction preprocessing step is proposed via higher-order singular value 
decomposition. We show that the increase on the tensor order provides a more efficient denoising, 
and consequently a better performance compared to existing spatial smoothing techniques. Finally, a 
solution based on a multi-stage Khatri–Rao factorization procedure is incorporated as the final stage of 
our proposed estimators. Our results demonstrate that the proposed tensor methods yield more accurate 
spatial signature estimates than competing approaches while operating in a challenging scenario where 
the source covariance structure is unknown and arbitrary (non-diagonal), which is actually the case when 
sample covariances are computed from a limited number of snapshots.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The great interest on the use of antenna arrays in communica-
tion systems is directly related to capacity and coverage gains they 
can provide, as well as the possibility of implanting techniques 
that promote space division multiple access (SDMA) [2,3]. In the 
SDMA context, the knowledge of spatial signatures of the source 
signals is very important, which has motivated the development 
of several matrix-based methods in the last decades [4]. The ex-
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isting solutions can be categorized into different ways depending 
on assumptions involving (i) the knowledge (or not) of pilot sig-
nals, (ii) the use of parametric or nonparametric models for the 
spatial signatures, (iii) the use of sources’ statistical independency 
or cyclostationarity, to mention a few. In this context, blind meth-
ods are of particular interest, as they are more bandwidth-efficient 
and avoid tight user synchronization [5–8].

Blind estimation techniques have shown great potential to solve 
array signal processing problems such as beamforming and direc-
tion of arrival estimation [5–8]. However, most of these methods 
do not fully exploit the multidimensional structure of the received 
data, which may span several domains such as space, time, fre-
quency and/or polarization. In particular, we can notice that space 
domain can be split into two signal dimensions (azimuth and el-
evation), while time domain can be divided into two dimensions 
(snapshots and frames).

In order to deal with such a multidimensional nature of the 
data signals, tensor decompositions have extensively been ap-
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plied in recent years in array signal processing and multiple-
antenna communication problems. In the signal processing con-
text, [8] proposes a transmission scheme based on power varia-
tions of the transmitted signals at successive time blocks where 
the blind spatial signature estimation problem is solved using two 
approaches: the first approach is based on the third-order PARAl-
lel FACtor (PARAFAC) tensor decomposition [9,10], while the sec-
ond one relies on a joint approximate diagonalization algorithm. 
In the seminal paper [12], a blind receiver for direct-sequence 
code division multiple access (DS-CDMA) systems is presented us-
ing the PARAFAC model. In [13] and [14], PARAFAC modeling is 
linked to the problem of multiple invariance sensor array process-
ing (MI-SAP) and MIMO radar systems, respectively. In [15] the 
signals’ polarization dimension is exploited in the tensor model-
ing of polarimetric arrays, while in [16] and [17] a closed-form 
PARAFAC solution and tensor-based ESPRIT algorithm are proposed 
for R-dimensional parameter estimation, respectively.

In the context of wireless communications, [18] proposes a 
unified PARAFAC-based modeling for tensor-based receivers with 
application to blind multiuser equalization. In [19] and [20], dif-
ferent tensor-based receivers are presented for solving the joint 
symbol and channel estimation problem in space-time-frequency 
(STF) MIMO communication systems. In the former, the PARAFAC 
decomposition is exploited to derive a closed-form solution based 
on the Khatri–Rao factorization. The latter proposes a semi-blind 
receiver based on alternating least squares that exploits a general-
ized PARATUCK2 model of the STF-MIMO transmission system. The 
key features motivating the use of tensor decompositions in the 
aforementioned works come from their powerful identifiability and 
uniqueness properties compared with matrix-based methods [10,
21]. Additionally, one can also benefit from the multidimensional 
structure of tensor data to perform noise rejection/prewhitening, 
as shown in [22].

In the particular context of spatial signature estimation in ar-
ray processing, the existing tensor methods [8,11,13] are restricted 
to the PARAFAC decomposition. An approach of particular interest 
here is the PARAFAC-based method of [8], which exploits multiple 
data covariance matrices by imposing a block-wise stationary prop-
erty on the source signals. It is worth mentioning that [8] assumes 
the source covariance matrices are diagonal and perfectly known at 
the receiver. However, these features correspond to the assumption 
of perfect decorrelation between source signals, while representing 
an asymptotic (ideal) situation where the data covariance matrix is 
perfectly computed/estimated from the received data samples. We 
are interesting in relaxing, or avoiding, such idealistic assumptions 
to deal with more general scenarios. Otherwise stated, this means 
that we should resort to more flexible tensor models to conve-
niently model the problem, which in turn have a direct impact on 
the receiver processing strategy to be used.

In this paper, we initially propose tensor-based methods to 
solve the problem of blind spatial signature estimation using pla-
nar arrays. Our methods discard idealizing assumptions about the 
source covariance structure, as opposed to the competing meth-
ods referred previously. Moreover, the proposed methods do not 
require the use of training sequences nor the knowledge about 
the propagation channel. By assuming that sources’ transmit pow-
ers vary between successive time blocks, we recast the spatial 
and spatiotemporal covariance models for the received data as a 
third-order PARATUCK2 and fourth-order Tucker4 tensor decom-
positions, respectively. For each proposed method, our second con-
tribution consists in developing iterative algorithms based on al-
ternating least squares (ALS) which are used to blindly estimate 
the sources’ spatial signatures. The proposed tensor methods are 
able to operate in a challenging scenario where sources covari-
ance structure is unknown and arbitrary (non-diagonal), which is 
actually the case when sample covariances are computed from a 

limited number of snapshots. Moreover, since planar arrays are 
used, the sources can be localized in the 2-D azimuth and el-
evation domain, in contrast to the previous tensor based meth-
ods.

As a third contribution of this paper, we also propose to in-
crease the spatial resolution by incorporating the proposed ex-
panded spatial smoothing which increases the dimensions of the 
data tensor allowing a better identifiability while adding robust-
ness to the proposed tensor-based methods. By exploiting the 
higher-order structure of the resulting expanded tensor model, 
a multilinear noise reduction preprocessing step via higher-order 
singular value decomposition is incorporated. We show that the 
increase on the tensor order provides a more efficient denois-
ing, improving the performance of the proposed PARATUCK2 and 
Tucker4 estimators. It also yields a better performance compared 
to existing spatial smoothing techniques. An identifiability study 
is also carried out for the proposed tensor-based methods. Fi-
nally, before extracting the directions of arrival of the sources, 
a solution based on the multi-stage Khatri–Rao factorization [16,
23] is incorporated as a refinement stage of our proposed estima-
tors.

The rest of this paper is organized as follows. Section 2 presents 
our signal model. In Section 3, we recall the baseline approach for 
spatial signature estimation from which the proposed methods are 
built. In Section 4, the proposed tensor-based estimators are for-
mulated and the receiver algorithms are discussed. After briefly 
recalling conventional spatial smoothing techniques in Section 5
for completeness, we formulate the expanded spatial smoothing 
scheme in Section 6. A denoising procedure via a multidimen-
sional low-rank approximation in conjunction with the expanded 
spatial smoothing scheme is also presented in this section. Iden-
tifiability results and computational complexity of the proposed 
methods are discussed in Section 7. Section 8 presents our sim-
ulation results and discussions. The paper is concluded in Sec-
tion 9.

Notations: The following notation is used throughout the paper. 
Scalars are denoted by lower-case italic letters x, vectors are writ-
ten as lower-case italic boldface letters x, matrices as upper-case 
italic boldface letters X , and tensors as calligraphic boldface let-
ters X . The superscripts T, H, † and ∗ represent transpose, Her-
mitian transpose, pseudo-inverse and complex conjugate, respec-
tively. The operator diag(x) converts x into a diagonal matrix. The 
j, r-th scalar element of X ∈ C

J×R is denoted by X ( j,r) , while its 
r-th column is denoted by X(:, r) ∈ C

J×1. The operator vec(X)

converts X to a vector x by stacking its columns on top of each 
other, while vecd(Y ) converts the diagonal elements of Y into 
a vector. The operator unvec J×R(x) denotes the inverse vector-
ization operation that converts x ∈ C

J R×1 back to a J × R ma-
trix. D j(X) is a diagonal matrix constructed from the j-th row 
of X , and ‖ · ‖F represents the Frobenius norm of a matrix or a 
tensor. The Kronecker, Khatri–Rao and Hadamard (element-wise 
matrix product) products are denoted by ⊗, � and �, respec-
tively. The Khatri–Rao product between two matrices X ∈ C

J×R

and Y ∈ C
K×R corresponds to a column-wise Kronecker prod-

uct, i.e.:

X � Y = [X(:,1) ⊗ Y (:,1), . . . , X(:, R) ⊗ Y (:, R)]. (1)

In this paper, the following properties of the Khatri–Rao and Kro-
necker products are used

vec(A BC T) = (C � A)vecd(B), (2)

vec(A BC T) = (C ⊗ A)vec(B), (3)

(A � B)H (A � B) = AH A � BH B. (4)
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