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This paper studies the joint state and parameter estimation problem for a linear state space system with 
time-delay. A multi-innovation gradient algorithm is developed based on the Kalman filtering principle. 
To improve the convergence rate, a filtering based multi-innovation gradient algorithm is proposed by 
using the filtering technique. The analysis indicates that the parameter estimates given by the proposed 
algorithms converge to their true values under the persistent excitation conditions. A simulation example 
is given to confirm that the proposed algorithms are effective.
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1. Introduction

Time-delays are often encountered in communication [1,2], sig-
nal processing [3,4], process control [5,6], and fault diagnosis and 
detection [7–9]. It is hard to avoid time-delays in industrial pro-
cesses and control systems due to material transport and signal 
interruption [10]. The existence of time-delays makes the control 
system difficult to respond for changes of the inputs in time. In 
addition, the time-delays can trigger instability and unsatisfactory 
performance of the controlled processes [11]. The identification of 
the time-delay systems has received much research interest [12,
13]. Based on the linear regression equation, Wang et al. pre-
sented a robust instrumental variable least squares algorithm for 
time-delay systems from step responses [14]. Na et al. transformed 
the single-input single-output systems with time-delay into a pa-
rameterized form using the Taylor series expansion and developed 
an adaptive identification scheme [15]. The above-mentioned work 
was discussed for the time-delay systems with input–output rep-
resentations.

Compared with the input–output representations [16–18], the 
state space models can reflect the motion of the inner states 
and involve the state estimates. A classical identification method 
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for state space models is the subspace state space identification 
[19,20]. Favoreel et al. applied the subspace identification to the 
multi-input multi-output bilinear systems with state space rep-
resentation, assuming that the inputs of the system were white 
and mutually independent [21]. Verdult and Verhaegen discussed 
the subspace identification problem of the multivariable linear 
parameter-varying state space systems, where the most dominant 
rows of the data matrices were selected for identifying the sys-
tems [22]. The subspace identification can directly provide the 
state space model from the input–output data, but the computa-
tional complexity increases as the dimensions of the singular value 
decomposition matrices and QR factorization increase.

The actual systems are usually corrupted by various stochastic 
noise (white noise or colored noise) and the external disturbances 
have important influences to signal processing [23,24] and system 
modeling [25,26]. In practice, it may be more reasonable to con-
sider the disturbance by colored noise because the statistical char-
acteristics of noises is unknown. Although the instrumental vari-
able methods and bias correction methods are effective for iden-
tifying the systems with colored noise, these methods ignore the 
estimation of the parameters of the noise model [27]. The filter-
ing technique is to eliminate the noise in the noisy measurement 
information and has been active in signal processing [28–30], im-
age processing [31] and system identification [32]. This paper uses 
the filtering technique to study the Kalman filtering based state 
and parameter estimation problem. The proposed algorithms in the 
paper can find many potential applications in the recovery and 
reconstruction of measurement signals in the noisy environment. 
Recently, Wang and Tang developed a gradient based iterative al-
gorithm for nonlinear systems using the data filtering [33].
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It is well-known that the Kalman filtering is based on the 
state space systems and is important in signal processing. This pa-
per considers the joint state and parameter estimation problem 
for time-delay state space systems with colored noise by using 
the multi-innovation identification theory [34,35] and the filtering 
technique. The difficulties are that the time-delay state space sys-
tem to be identified involves not only the parameters of the system 
model, but also those of the noise model, as well as the unknown 
time-delay and states. By using the multi-innovation identification 
theory, the system data and innovations are utilized repeatedly, 
and the convergence rate can be improved. The main contributions 
of this paper are as follows:

• By using the Kalman filtering technique, this paper presents 
a multi-innovation gradient (MIG) algorithm and a filtering 
based multi-innovation gradient (F-MIG) algorithm for esti-
mating the states and parameters of the time-delay systems.

• By using the stochastic martingale theory, this paper analyzes 
the performance of the MIG algorithm and the F-MIG algo-
rithm for time-delay state space systems.

• The proposed methods can combine the iterative technique 
[36–38] for studying the Kalman filtering based iterative pa-
rameter estimation approaches.

The previous work in [39] considered the state and parameter 
estimation for a nonlinear state space system without time-delay, 
by means of the key term separation technique, and did not in-
volve convergence analysis. However, it is well-known that the 
time-delay system’s state filtering and parameter estimation are 
more difficult than the no time-delay system. This paper considers 
the state filtering and parameter estimation for linear state space 
system with time-delay. Also, this paper analyzes the convergence 
of the proposed algorithms and given two convergence theorems 
and their proofs.

The remainder of this paper is organized as follows. Section 2
describes the time-delay state space systems and gives the prob-
lem statements. Sections 3 and 4 develop an MIG algorithm and 
an F-MIG algorithm and discuss their convergence. Section 5 pro-
vides a simulation example to test the validity of the proposed 
algorithms. Finally, the concluding remarks are drawn in Section 6.

2. Problem description and system model

Consider the following state space system with time-delay,

x(k + 1) = Ax(k) + bu(k), (1)

y(k) = cx(k − τ ) + w(k), (2)

where x(k) := [x1(k), x2(k), · · · , xn(k)]T ∈ R
n represents the state 

vector, u(k) ∈ R and y(k) ∈ R represent the system input and out-
put, respectively, τ is the time-delay, w(k) ∈ R is stochastic noise, 
A ∈ R

n×n , b ∈ R
n and c ∈ R

1×n are the system parameter matrix 
and vectors:

A :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
a1 a2 a3 · · · an

⎤
⎥⎥⎥⎥⎥⎥⎦

∈R
n×n, b :=

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
...

bn−1
bn

⎤
⎥⎥⎥⎥⎥⎦ ∈R

n,

c := [1, 0, · · · , 0] ∈ R
1×n.

Without loss of generality, assume that u(k) = 0, y(k) = 0 for 
k � 0. Referring to the method in [39] and from (1), we have

xi(k + 1) = xi+1(k) + biu(k), i = 1,2, · · · ,n − 1, (3)

xn(k + 1) = a1x1(k) + a2x2(k) + · · · + anxn(k) + bnu(k). (4)

Multiplying (3) by z−i and (4) by z−n and using the property of 
the unit back shift operator z−1 give

xi(k − i + 1) = xi+1(k − i) + biu(k − i), i = 1,2, · · · ,n − 1,

(5)

xn(k − n + 1) = a1x1(k − n) + a2x2(k − n) + · · ·
+ anxn(k − n) + bnu(k − n). (6)

Adding all the expressions of (5) and (6), we have

x1(k) =
n∑

i=1

ai xi(k − n) +
n∑

i=1

biu(k − i). (7)

The disturbance w(k) is colored noise. Here, w(k) is assumed to 
be an autoregressive process,

w(k) := 1

F (z)
v(k) ∈R, (8)

where v(k) is white noise with zero mean and variance σ 2, and 
the polynomial F (z) is a function in the shift operators z−1 with

F (z) := 1 + f1z−1 + f2z−2 + · · · + fmz−m.

Provided that the orders n and m are known. For the system in (1)
and (2), if the state vector x(k) is known, the system matrix/vec-
tor (A, b) are easy to be identified by using the similar method in 
[40]. This paper considers the case that the state x(k) is completely 
unavailable. The objective is to propose new methods for jointly 
estimating the unknown states and parameters from the measure-
ment data {u(k), y(k): k = 1, 2, · · ·}, and to study the performance 
of the proposed methods.

Define the parameter vectors ϑ , θ and f as

ϑ := [θT, f T]T ∈ R
2n+m,

θ := [a1,a2, · · · ,an,b1,b2, · · · ,bn]T ∈R
2n,

f := [ f1, f2, · · · , fm]T ∈R
m,

and the information vectors ϕ(k), ϕs(k) and ϕn(k) as

ϕ(k) := [ϕT
s (k − τ ),ϕT

n(k)]T ∈R
2n+m,

ϕs(k) := [x1(k − n), x2(k − n), · · · , xn(k − n),

u(k − 1), u(k − 2), · · · , u(k − n)]T

= [xT(k − n), u(k − 1), u(k − 2), · · · , u(k − n)]T ∈R
2n,

ϕn(k) := [−w(k − 1),−w(k − 2), · · · ,−w(k − m)]T ∈R
m.

From (7), (8) and (2), we have

x1(k) = ϕT
s (k)θ , (9)

w(k) = [1 − F (z)]w(k) + v(k)

= ϕT
n(k) f + v(k), (10)

y(k) = x1(k − τ ) + w(k) (11)

= ϕT
s (k − τ )θ + ϕT

n(k) f + v(k)

= ϕT(k)ϑ + v(k). (12)

The information vector ϕ(k) consists of the state vector x(k − τ −
n), the input u(k − i) and the correlated noise w(k − i), and the 
parameter vector ϑ consists of the parameters ai and bi of the 
state space model in (1)–(2) and the parameters f i of the noise 
model in (8).
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