
JID:YDSPR AID:2114 /FLA [m5G; v1.218; Prn:1/06/2017; 12:03] P.1 (1-9)

Digital Signal Processing ••• (••••) •••–•••

Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

Inverse synthetic aperture radar phase adjustment and cross-range 

scaling based on sparsity

Hamid Reza Hashempour, Mohmmad Ali Masnadi-Shirazi ∗

Dept. of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran

a r t i c l e i n f o a b s t r a c t

Article history:
Available online xxxx

Keywords:
Cross-range scaling
Inverse synthetic aperture radar (ISAR) 
imaging
Sparsity

Due to inherent sparsity of ISAR images, compressive sensing theory has been used to obtain a high 
resolution image. However, before applying sparse recovery methods, the phase error due to the 
translational motion of target is compensated by autofocusing algorithms and the target rotation rate is 
estimated by cross-range scaling methods. In this paper, a comprehensive matrix model for a uniformly 
rotating target that includes the phase error and chirp-rate of the target is derived. Then by using sparsity 
and minimum entropy criterion, the estimation of residual phase error and the rotation rate is refined. 
In order to reduce the computational load, we simplify the model and by an iterative method based 
on adaptive dictionary, the phase error and chirp-rate are estimated separately. Actually, by exploiting 
a two-dimensional (2D) optimization method and the Nelder–Mead algorithm the phase adjustment is 
performed and the chirp-rate is estimated by solving a 1D optimization method for dominant range cells 
of the target. Finally, both simulation and practical data have been used to verify the validity of the 
proposed approach.

© 2017 Published by Elsevier Inc.

1. Introduction

Inverse synthetic aperture radar (ISAR) is a powerful signal pro-
cessing tool for imaging moving targets usually on the two dimen-
sional (2D) down-range cross-range plane [1]. ISAR imagery plays 
an important role especially in military applications such as tar-
get identification, recognition, and classification [1,2]. In order to 
achieve a high resolution ISAR image, the radar transmits large 
bandwidth signal and integrates the received echoes of a moving 
target from different aspect angles coherently.

Recent results in signal processing have demonstrated the abil-
ity of Compressive Sensing (CS) to reconstruct a sparse or com-
pressible signal from a limited number of measurements with 
a high probability by solving an optimization problem [3,4]. Re-
cently, CS has been adopted to obtain high-resolution ISAR im-
ages [5–11]. In [7–11] the authors assume that range alignment 
and phase adjustment have been completely done by conventional 
methods such as [12–14] and then a sparsity-driven algorithm 
is used to generate high-resolution ISAR images. Specifically, in 
[11], a high-resolution fully polarimetric ISAR imaging is proposed 
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that images are constructed by means of the sparse recovery al-
gorithm under the constraint of the joint sparsity. Actually, a 2D 
smoothed l0 norm (2D-SL0) reconstruction algorithm introduced 
in [15] is exploited by [11] to solve the sparsity-driven optimiza-
tion problem. However, sparsity can be used to refine the phase 
adjustment, for example in [16] sparsity is exploited for joint SAR 
imaging and phase error correction. In [17] and[18] Bayesian com-
pressive sensing (BCS) are developed for both ISAR imaging and 
phase adjustment for full aperture and sparse aperture (SA) con-
ditions, respectively. Moreover, in [19] by utilizing sparse Bayesian 
learning, an autofocus technique is proposed to obtain a focused 
high-resolution radar image. On the other hand, in the above men-
tioned sparse based ISAR imaging the rotation rate is not esti-
mated and therefore the obtained image cannot be scaled in the 
cross-range dimension. In [10] and [20] sparsity is applied to esti-
mate the unknown rotation rate. Specifically, in [10] a parametric 
sparse representation method is exploited for both ISAR imaging 
and cross-range scaling of rotating targets.

In this paper, a comprehensive matrix model for a uniformly 
rotating target that includes both the phase error and chirp-rate of 
the target is derived. In order to simplify the sparse problem, the 
phase error and chirp-rate are estimated separately. Before solving 
the sparsity-driven algorithm the coarse motion compensation is 
performed by conventional methods introduced in [21–23], then 
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Fig. 1. Geometry of a rotating target in ISAR model.

by using joint constraint of sparsity and minimum entropy, the 
estimation of residual phase error is refined through an iterative 
method based on adaptive dictionary. Moreover, to speed up the 
reconstruction and reduce the memory usage, we exploit the dic-
tionary so that the 2D-SL0 reconstruction algorithm can be used. 
In other words, by exploiting a two-dimensional (2D) optimization 
method and the Nelder–Mead algorithm [24] both phase adjust-
ment and ISAR imaging are evaluated.

After fine motion compensation, the chirp-rate is estimated. In 
[25], the author proposed an algorithm for cross-range scaling. 
Therefore, we first estimate an initial value for chirp-rate using the 
method of [25], and then by an iterative approach, solve a 1D opti-
mization method for dominant range cells of the target and search 
the best chirp rate around the initial value.

The remainder of this paper is organized as follows. Section 2
introduces the signal model. In section 3 the proposed sparse 
based algorithm is introduced. Sections 4 and 5 present some sim-
ulation and experimental results to validate the algorithm, respec-
tively. Finally, Section 6 concludes this paper.

2. Signal model

In this section, we first describe the geometry of the target and 
the signal model and then simplify this model. The geometry of 
the uniformly rotating target is shown in Fig. 1. When the target 
is in the far field of the radar, the instantaneous distance from the 
scattering center P (x, y) to the radar can be approximated as

R(t) ∼= Rt(t) + x cos(�t) − y sin(�t) (1)

where Rt(t) is the target’s translation range distance from the 
radar and � is the angular velocity of the target which is constant 
during the CPI. If the CPI and the angular velocity of the target 
are small enough we can approximate R(t) by a two-order Taylor’s 
polynomial approximation as:

R(t) ≈ Rt(t) + x − y�t − x

2
�2t2 (2)

without loss of generality assume that the radar transmits a linear 
frequency-modulated (LFM) signal as

s(τ ) = rect

(
τ

T p

)
· exp

{
j2π

(
fcτ + α

2
τ 2

)}
(3)

where τ denotes the fast time, T p is the pulse duration, fc is the 
carrier frequency, α is the chirp rate, and rect(·) stands for the 
unit rectangular function. After the demodulation to baseband, the 
complex envelope of the received signal from P (x, y) can be writ-
ten in terms of the fast time τ and slow time t as:

u(τ , t) = σ · rect

(
τ − 2R(t)

c

T p

)
· rect

(
t

To

)

· exp
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− j4π
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c
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(4)

where λ is the wavelength, c is the speed of light, To is the ob-
servation time and σ is the scatterer radar cross section (RCS) 
coefficient. According to the assumption of short CPI, the scatter-
ing characteristic is assumed to be stationary during the observing 
time. Due to the rotational motion of the target, at different dwell 
times t , the signal has different time delays in the fast time τ , 
which may cause migration through resolution cell (MTRC). In [26]
and [27] some approaches have been presented to compensate 
MTRC efficiently. Assume that range alignment [12–14] and MTRC 
have been done, then by substituting (1) and (2) into (4) we will 
have

u(τ , t) = σ · rect

(
τ − 2(R0+x)

c

T p

)
· rect

(
t

To

)
exp { jφe(t)}

· exp

{
− j4π
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}
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(x�2t2)

λ

}

· exp
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(
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c

)2
}

(5)

where φe(t) is the phase error induced by translational motion of 
the target. In order to obtain the signal in range-frequency, slow-
time domain we should first obtain Fourier transform of the LFM 
signal in (3), but the exact derivation is not straightforward, then 
a convenient approximate expression can be obtained by the Prin-
ciple of Stationary Phase (POSP)[28] and the spectrum of the LFM 
signal becomes

S( fτ ) = rect

(
fτ

αT p

)
· exp

{
− jπ

f 2
τ

α

}
(6)

where fτ is the range-frequency. Assume that the target of interest 
contains K scattering centers, then by using (6) the signal in the 
range-frequency slow-time domain is

u( fτ , t) = exp

{− j4π( fc + fτ )R0

c

}
· exp { jφe(t)} ·
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}
(7)

Assume that the range frequency, fτ , can be written as fτ = fn =
(n − 1)	 f , n = 1, 2, . . . , N , where 	 f is the space between two 
samples in the frequency domain, and the corresponding aspect 
angle of a target with respect to the radar in the mth pulse is 
θm = −�tm = (m − 1)�T P R I , m = 1, 2, . . . , M , where T P R I denotes 
the pulse repetition interval. Therefore, (7) can be rewritten as

um,n = exp

{− j4π( fc + fτ )R0

c

}
· exp { jφe(t)}

·
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}
(8)
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