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The paper discusses the separation of partially overlapping data packets by an antenna array in 
narrowband communication systems. This problem occurs in asynchronous communication systems 
and several transponder systems such as Radio Frequency Identification (RFID) for wireless tags, 
Automatic Identification System (AIS) for ships, and Secondary Surveillance Radar (SSR) and Automatic 
Dependent Surveillance—Broadcast (ADS—B) for aircraft. Partially overlapping data packages also occur 
as inter-cell interference in mutually unsynchronized communication systems. Arbitrary arrival times 
of the overlapping packets cause nonstationary scenarios and makes it difficult to identify the signals 
using standard blind beamforming techniques. After selecting an observation interval, we propose 
subspace-based algorithms to suppress partially present (interfering) packets, as a preprocessing step 
for existing blind beamforming algorithms that assume stationary (fully overlapping) sources. The 
proposed algorithms are based on a subspace intersection, computed using a generalized singular 
value decomposition (GSVD) or a generalized eigenvalue decomposition (GEVD). In the second part of 
the paper, the algorithm is refined using a recently developed subspace estimation tool, the Signed 
URV algorithm, which is closely related to the GSVD but can be computed non-iteratively and allows 
for efficient subspace tracking. Simulation results show that the proposed algorithms significantly 
improve the performance of classical algorithms designed for block stationary scenarios in cases where 
asynchronous co-channel interference is present. An example on experimental data from the AIS ship 
transponder system confirms the effectiveness of the proposed algorithms in a real application.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Co-channel interference is a growing concern in wireless com-
munication applications. One approach for interference mitigation 
is to use an antenna array. Beamforming techniques allow to re-
ceive the target signals and suppress the interference signals, as-
suming the array response vector of each of the signals is known. 
Blind beamforming techniques aim to estimate these array re-
sponse vectors.

In many cases, the interference is intermittent and unsynchro-
nized. For example, inter-cell interference reduces channel capacity 
in Multiple Input Multiple Output (MIMO) cellular networks [6,
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7]. Also, ad-hoc communication systems or wireless sensor net-
works where devices transmit whenever data is available result in 
multiple partially overlapping data packets at the receiver. Other 
examples are Radio Frequency Identification (RFID) systems with 
multiple tags, the Automatic Identification System (AIS) for ships, 
wherein transponders periodically report their locations [8,9], the 
secondary surveillance radar (SSR) [10,11,2] and similar Automatic 
Dependent Surveillance—Broadcast (ADS—B) transponder systems 
for aircraft. Another example is multiple unsynchronized Wireless 
Local Area Network (WLAN) systems in the same service area.

In this paper we consider the separation of partially overlapping 
data packets using blind beamforming techniques under narrow-
band assumptions. We consider an observation interval (typically 
a sliding window) matched to the length of the data packets, and 
consider packets that are fully inside this window as target signals, 
and packets that are partially in the window as interfering signals. 
It is important to realize that, in this scenario, there is no inherent 
property that defines a “target” or “interference” signal, the clas-
sification is based on the position of packets in the observation 
interval.

The approach is to collect a block of data from an analysis win-
dow. The data block is split into two sub-blocks, and we compare 
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the subspaces present in each block. Specifically, a generalized sin-
gular value decomposition (GSVD) allows to match basis vectors 
within the subspaces to each other, and target/interference signal 
classification is based on detecting differences in signal power be-
tween the two blocks. The subspace information from the GSVD 
directly leads to a beamformer to suppress the interfering signals 
while keeping the target signals. The analysis window can then 
shift a number of samples and the process is repeated, allow-
ing previously classified “interference signals” to become properly 
aligned and be detected as target signals.

It could happen that the resulting subspace contains multi-
ple target signals. In that case, the proposed algorithm return a 
mixture of the nearly fully overlapping target signals, and other 
properties should provide further separation, such as constant 
modulus properties (the Algebraic Constant Modulus (ACMA) al-
gorithm [12]) or related algorithms based on fourth-order cumu-
lants (the Joint Approximation Diagonalization of Eigen-matrices 
(JADE) [13] and the Multi-User Kurtosis (MUK) algorithms [14]). 
Such algorithms explicitly assume stationary signals and therefore 
typically cannot handle intermittent interference or signals with 
non-stationary properties, and the algorithms in this paper can 
serve as a preprocessing step both to filter out the intermittent 
signals and to arrive at a nearly synchronous scenario.

To understand why traditional blind source separation algo-
rithms based on cumulants such as ACMA and JADE fail on in-
termittent sources, consider first a data matrix X consisting of N
samples of a mixture of stationary sources. Based on X, these algo-
rithms estimate a cumulant matrix Q and derive separating beam-
formers from it. Each entry of Q can be written as S4/N − S2/N2, 
where S4 is a sum of fourth-order products of entries of X, and 
S2 a combination of sums of second-order products. If we now 
augment X with N “zero” columns to [X, 0], then S4 and S2 do 
not change, while the weights (1/N) and (1/N2) scale with factors 
(1/2) and (1/4), respectively. Very quickly, Q loses the structure 
on which the computation of the beamformers rely. This simple 
example shows that ACMA and JADE are not reliable for separat-
ing intermittent sources, and this is confirmed in the simulations 
in Sec. 8.

The paper has two parts. We first propose a generic algorithm 
based on the GSVD [15] or the related generalized eigenvalue de-
composition (GEVD). We then work out an implementation based 
on a new tool—the Signed URV (SURV) algorithm [16,17]. This 
leads to a computationally efficient technique that allows for track-
ing and improved noise processing. Simulations and an experiment 
using acquired AIS data are provided to confirm the results.

Interference cancellation using oblique projections has been 
studied in [18,19], assuming the “target” and “’interference” sub-
spaces are known. Here, we focus on the estimation of the re-
quired subspace information so that these tools can be applied. 
Not many papers consider intermittent interference cancellation 
based on subspace techniques. For the blind separation of partially 
overlapping SSR signals, Petrochilos et al. proposed a block-based 
tracking algorithm [20,21] based on detecting and projecting out 
rank-1 components representing time segments where only a sin-
gle source is present. The existence of such segments can be con-
sidered as a simplified special case of our scenarios.

Notation

Matrices and vectors are denoted by uppercase and lowercase 
boldface symbols, respectively. (A)i j denotes the i, jth entry of a 
matrix A. For a matrix A, AH denotes the complex conjugate trans-
pose, and A† denotes the Moore–Penrose matrix pseudo-inverse. If 
A has full column rank, then A† = (AH A)−1AH .

E{·} is the expectation operator.

‖·‖ denotes the matrix 2-norm, which is equal to the largest 
singular value of the matrix.

Subspaces are denoted by calligraphic symbols. The column 
span (range) of a matrix A is A = ran(A).

2. Data model

2.1. Signals

We consider unknown discrete-time intermittent signals (data 
packets) si[k] where i is the signal index and k is the time index. 
Each signal consists of a stretch of Np nonzero values, preceded 
and followed by zeros. For simplicity of notation, all intermittent 
signals will have the same packet length Np (this is generalized at 
a later stage). There are d signals, and they are stacked in a vector 
s[k] = [s1[k], · · · , sd[k]]T .

We assume that the receiver has an antenna array with M an-
tennas, and we stack the (complex-valued) antenna signals into 
a vector x[k] ∈ CM . In a narrowband scenario, the received signal 
vector is an instantaneous mixture

x[k] = h1s1[k] + · · · + hdsd[k] + n[k] = Hs[k] + n[k] (1)

where the vectors hi , i = 1, · · · , d are the channel vectors (array 
response vectors) corresponding to each signal, H = [h1, · · · , hd] ∈
CM×d is the channel matrix, s = [s1, · · · , sd]T is the source vector, 
and n ∈ CM is the noise vector.

We assume that the unknown channel matrix H has full column 
rank. This also implies that d ≤ M . In our applications, we have an 
inherent scaling indeterminacy between signals and channel vec-
tors; without loss of generality we will assume that the channel 
vectors are all scaled to ‖hi‖ = 1 (this can be achieved by exchang-
ing a scaling factor with si[n]). No further parametric structure is 
assumed on H, e.g., we do not consider a calibrated array, with 
channel vectors functions of source directions and antenna loca-
tions. Also, multipath and antenna coupling may be present as this 
leads to the same instantaneous mixture model (1).

The noise is modeled by i.i.d. zero mean Gaussian vectors, with 
covariance matrix Rn = E{nnH } = σ 2I. We assume that the noise 
power σ 2 is known.

If we have collected Ns observations x[k], then we can col-
lect these into a matrix X = [x[1], · · · , x[Ns]], and similarly for the 
source signals and the noise. The corresponding data model is

X = HS + N . (2)

The sample covariance matrix is R̂x = 1
Ns

XXH .

2.2. Separation scenario

We assume that we have obtained Ns samples of data corre-
sponding to an “analysis window”. Thus, in the data model (2), 
X is known and H, S are unknown. Our algorithms are based on 
splitting this window into two parts and comparing the subspaces 
determined by each part. The splitting can be done in several 
ways, each corresponding to different definitions of target signals 
and interference signals. Here, we limit the presentation to one 
scenario, explained below. A second scenario applicable to contin-
uously present target signals is described in Appendix A.

We split the analysis window into three blocks (see Fig. 1). 
A target signal is defined by being centered in the middle block, 
and the corresponding data matrix is denoted by X1. Interfering 
signals are defined by being more present in the first or third 
block. Samples from these two blocks are combined into a single 
data matrix X2 as shown in Fig. 1.

As a refinement of (2), assume that there are ds target signals 
and d f interference signals. The channel vectors of the target sig-
nals are collected in a matrix Hs , and those of the interference 
signals in H f . We also define H = [Hs, H f ].
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