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This paper presents an architecture namely the Mirror MFx (MMFx) for adapting adaptive filtering 
algorithms for Active Noise Control (ANC) with on-line secondary path modelling. The proposed 
architecture is used in conjunction with the LMS algorithm, resulting in the MMFxLMS algorithm. 
A time domain analysis of the algorithm is presented, showing that the algorithm converges regardless of 
secondary path modeling errors. Simulations of the algorithm in different conditions but with the same 
parameters result in 100% convergence. The algorithm is especially suited to deal with large and sudden 
changes in the secondary path when the ANC system is in operation. Comparisons with competing 
algorithms are made, showing that they do not reach the same performance.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In active noise control (ANC) [1–8] a sound wave (anti-noise) 
with opposite phase to a noise wave is used to reduce the noise. 
It works well at low frequencies, acting as a complement to tra-
ditional passive techniques. The most used algorithm in ANC is 
the filtered-x least mean squares (FxLMS) [1,8] algorithm. The 
modified FxLMS (MFxLMS) algorithm [9] is also common. Both 
algorithms require a secondary path model, but none is very sen-
sitive to secondary path modelling errors [10,1]. The secondary 
path model can be obtained before the starting of the ANC sys-
tem (off-line). But if the secondary path varies significantly while 
the ANC system in on then on-line modelling is required. There 
are several of on-line secondary path modelling algorithms. These 
can be based on the overall modelling algorithm (OMA) [1,2,8] in 
the simultaneous equations method [11,12] or with auxiliary noise 
[13–22]. However, most of these algorithms are not suitable for 
dealing with sudden secondary path changes, but only deal with 
slow changes. They can become unstable after sudden changes. 
The proposed algorithm however, is stable even with incorrect sec-
ondary path models and deals very well with sudden changes.

The proposed algorithm is represented in Figs. 1 and 2 and in 
Table 1. Fig. 2 is the detail of the block named OMA in Fig. 1. This 
corresponds to equations (5) to (8) in Table 1. Vectors are shown 
in bold face letters, and xT represents the transpose of vector x. 
The vectors x(n), x′(n) and y(n) are formed by past samples of the 
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Fig. 1. The MMFxLMS algorithm.

Fig. 2. The overall modelling algorithm (OMA).
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Table 1
The MMFxLMS algorithm.

ŝ(0) = [1,0 . . .0]T (1)

p̂(0) = w(0) = 0 (2)

x(0),x′(0),y(0) = 1 (3)

y(n) = −xT(n)w(n) (4)

ê1(n) = p̂T(n)x(n) + ŝT(n)y(n) (5)

α(n) = e(n) − ê1(n) (6)

p̂(n + 1) = p̂(n) + μspx(n)α(n)

xT(n)x(n) + yT(n)y(n)
(7)

ŝ(n + 1) = ŝ(n) + μspy(n)α(n)

xT(n)x(n) + yT(n)y(n)
(8)

x′(n) = ŝT(n)x(n) (9)

d̂(n) = p̂T(n)x(n) (10)

ê2(n) = d̂(n) − wT(n)x′(n) (11)

w(n + 1) = w(n) + μx′(n)ê2(n)

x′ T(n)x′(n)
(12)

corresponding scalar signals, as in x(n) = [x(n) . . . x(n − N + 1)]T. 
These vectors should be carefully initialized.

The idea is to model the primary and secondary paths using 
the OMA, and use the model of the primary path to estimate the 
desired signal, d(n). This is the desired output of the concatena-
tion of the secondary path, S(z), and controller filter, W (z). Then 
the controller and secondary path filters are exchanged resulting in 
the algorithm as presented. This can also be derived by creating a 
mirror copy of the acoustics paths using the obtained models, and 
then using the MFxLMS algorithm. Due to the mirror operation the 
algorithm is called Mirror MFxLMS or MMFxLMS. The adaptive al-
gorithm used is the NLMS [23] as presented in Table 1. Note that 
in the proposed algorithm there is no need for prior knowledge of 
the primary and secondary paths.

2. State of the art

In [13] Eriksson proposes the original on-line secondary path 
modelling technique using auxiliary noise. In [24] a comparison 
of the overall modelling technique, with the auxiliary noise tech-
nique, is presented. The primary noise is removed from the mod-
elling of the secondary path using an auxiliary filter in [14]. [25]
also reduces the disturbance in the modelling of the secondary 
path by removing the delayed residual error signal. [15] extends 
[14] by removing the additive noise signal from the adaptation of 
the auxiliary filter. [16] introduces auxiliary noise power schedul-
ing and imposes a constraint on the norms of the adaptive filters. 
[17] compares [15] with [14]. [18] uses a variable step size that 
increases with the convergence of the ANC system and in [19] a 
convergence measure is used to control the auxiliary noise power. 
[20] makes the ratio of the auxiliary noise at the error microphone 
to the residual noise a constant, and uses optimum values for the 
step size of the controller and secondary path filters. [21] proposes 
two algorithms, an on–off algorithm that turns the additive noise 
off when the current estimate performs worse than the best so 
far, and on when the noise level increases; and an auxiliary noise 
power scheduling algorithm where the auxiliary noise signal level 
is proportional to the power of the residual noise signal. [22] pro-
poses a two-stage auxiliary noise power scheduling algorithm. At 
stage one the auxiliary noise signal level is similar to [20] and in 
stage two it is proportional to the square of the residual noise sig-

nal power. In [26] the auxiliary noise level is similar to [20], but 
the ratio is variable. The ratio is greater when noise reduction is 
high and low when noise reduction is lower. This allows for faster 
convergence, resulting in better performance when dealing with 
sudden changes in the secondary path. The proposed algorithm 
does not use auxiliary noise, and is based on the overall modelling 
technique.

3. Time domain analysis

Take the algorithm in Table 1. Most of the signals depend on n, 
so we dropped the dependence on n on some signals, in order to 
simplify the notation. Let,

A(n) =
⎛
⎝ μ′

spxxT μ′
spxyT 0

μ′
spyxT μ′

spyyT 0
0 0 μ′x′x′ T

⎞
⎠ (13)

where μ′
sp = μsp/(xT(n)x(n) +yT(n)y(n)) and μ′ = μ/(x′ T(n)x′(n)). 

This is a block diagonal matrix, formed by two blocks, A1(n) and 
A2(n), with A2(n) = μ′x′x′ T and

A1(n) =
[

μ′
spI 0
0 μ′

spI

][
x
y

]
[xTyT]. (14)

And let,

π(n) = [p̂T(n), ŝT(n), wT(n)]T (15)

πo(n) = [pT(n), sT(n), wT
o(n)]T (16)

r(n) = [μ′
spxT(n)r(n),μ′

spyT(n)r(n), 0]T. (17)

The proposed algorithm can be written as,

π(n + 1) = (I − A(n))π (n) + A(n)πo(n) + r(n), (18)

where wo(n) was defined so that,

xT(n)p̂(n) = x′ T(n)wo(n). (19)

Taking the z-transform, this corresponds to having Ŝ(z)Wo(z) ≈
P̂ (z). Note, however, that in general wo(n) will be time varying. 
This will degrade the performance of the algorithm, because it 
makes πo(n) also time varying. Defining �π (n) = π(n) − πo(n)

and dπo(n + 1) = πo(n + 1) − πo(n) we can rewrite (18) as,

�π(n + 1) = (I − A(n))�π (n) − dπo(n + 1) + r(n) (20)

As long as the absolute value of eigenvalues of the matrix I − A(n)

are less than one, π (n + 1) will converge to πo(n), as soon as this 
stabilizes so that dπo(n +1) is zero, apart from a noise term due to 
r(n). This is equivalent to having the eigenvalues of A between zero 
and two. Note, that the eigenvalues of A are equal to the union of 
the eigenvalues of A1 and A2. Both matrices have characteristic 
one. The eigenvalues of A1 are λ = μ′

spxTx + μ′
spyTy, correspond-

ing to eigenvector u = [μ′
spxT, μ′

spyT]T, and λ = 0. The eigenvalues 
of A2 are λ = μ′x′ Tx′ , corresponding to eigenvector u = x′ T, and 
λ = 0. So for convergence one should have μ′

sp(xTx + yTy) < 2 or 
μsp < 2; and μ′ < 2/(x′ Tx′) or μ < 2. The zero eigenvalues require 
special attention. This will result in eigenvalues of I − A(n) equal 
to one. So one gets decreasing modes and constant modes at each 
iteration of the algorithm. Still, as long as there are persistent ex-
citation signals, the decreasing modes will spread through all the 
modes of the state, resulting in global convergence. However, if 
some modes are not excited then they will get stuck on their ini-
tial values. Note that for constant modes r(n) is zero, as shown in 
the following.

Since A is a block diagonal matrix, then (20) can be split into 
two equations, one related to the update of p̂ and ŝ and the other 
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