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In this paper, we present a locality-constrained nonnegative robust shape interaction (LNRSI) subspace 
clustering method. LNRSI integrates the local manifold structure of data into the robust shape interaction 
(RSI) in a unified formulation, which guarantees the locality and the low-rank property of the optimal 
affinity graph. Compared with traditional low-rank representation (LRR) learning method, LNRSI can not 
only pursuit the global structure of data space by low-rank regularization, but also keep the locality 
manifold, which leads to a sparse and low-rank affinity graph. Due to the clear block-diagonal effect 
of the affinity graph, LNRSI is robust to noise and occlusions, and achieves a higher rate of correct 
clustering. The theoretical analysis of the clustering effect is also discussed. An efficient solution based 
on linearized alternating direction method with adaptive penalty (LADMAP) is built for our method. 
Finally, we evaluate the performance of LNRSI on both synthetic data and real computer vision tasks, 
i.e., motion segmentation and handwritten digit clustering. The experimental results show that our LNRSI 
outperforms several state-of-the-art algorithms.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the past decades, subspace learning and clustering problems 
have been an interesting research topic in computer vision and 
machine learning. Generally, it is assumed that the data points 
are drawn from multiple low dimensional subspaces, and then the 
basic task of subspace clustering is to cluster the data points ac-
cording to the underlying subspace.

A number of subspace clustering methods have been developed. 
According to the mechanism of clustering, these methods can be 
divided into 4 groups: algebraic methods ([1,2]), iterative methods 
([3,4]), statistical methods ([5–7]), and spectral clustering methods 
([8,9]). Due to the fruitful theory and simple implement, spectral 
clustering has become one of the most popular subspace clustering 
algorithms ([10]).

The key step of spectral clustering is the construction of the 
affinity graph. In general, the ways to construct affinity graph 
can be classified into the local distance based scheme and the 
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global linear representation based scheme. Traditional local meth-
ods adopt the Euclidean distance between pairwise points to build 
the similarity graph, such as Laplacian Eigenmaps [11], k-NN [12], 
LLE [13]. If the data X j is not located within the neighbors of Xi , 
then the elements of affinity matrix are set as Zij = 0, other-
wise, Zij will be determined by the distance between data points 
Xi and X j . The local method can capture the local structure of 
the datasets, and it’s sparse and discriminative. But it ignores 
the global characteristic of the entire data set, so it’s sensitive to 
noise and outliers. Generally, local methods work well if the neigh-
bors for each sample point are correctly selected, i.e., the selected 
neighbors can reflect the local geometric structure of the manifold 
subspace.

Compared with local distance based method, the global linear 
representation based schemes assume that each data point can be 
linearly represented in an over-complete dictionary (i.e., X = D Z , 
where D is the overcomplete dictionary). By applying different 
kinds of regularization on the representation space, various affinity 
graph can be constructed, such as sparse subspace clustering (SSC), 
linear squared regression (LSR), low rank representation (LRR), etc.

Sparse subspace clustering [8,14] assume that a data point in 
the union of multiple subspaces admits a sparse representation 
with respect to the dictionary formed by all other data points, i.e., 
min‖Z‖0, s.t. X = X Z . It is also shown that, under the assumption
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that the subspaces are independent, if Zij �= 0, then data Xi and 
X j will belong to the same subspace. Finally, the affinity graph can 
be constructed by the sparse representation matrix Z . SSC have 
achieved many state-of-art results in several applications, such as 
feature extraction [15,16], motion segmentation [17,18]. However, 
it suffers from the following problems. On one hand, SSC is ac-
tually a point-wise analysis. It can be divided into n independent 
subproblems min

∑
i ‖Zi‖0, s.t. Xi = X Zi . So the correlation be-

tween data and the global characteristic of the subspace may be 
ignored. On the other hand, if there are several data points having 
strong linear correlation with Xi , the SSC will randomly choose 
one. Therefore, while SSC can pursue the sparsity of the affinity 
graph, it may reduce the accuracy of clustering.

Compared with sparse based methods, low-rank based methods 
aim at finding the lowest rank representation of all data jointly, 
i.e., min rank(Z), s.t. X = X Z . Therefore, it’s more suitable to pur-
sue the global and intrinsic information of data space. If the data 
points are sampled from a single subspace, the underlying sub-
space structure can be exactly recovered by the Robust Principle 
Component Analysis (RPCA) [19] under some mild conditions. The 
work by Liu [9] extends the recovery of corrupted data from sin-
gle subspace to multiple subspaces, and finds that the multiple 
subspace structure can be revealed by the low rank representation 
(LRR) coefficients of a given dictionary. As the rank regularization 
is not convex and difficult to optimize, the nuclear norm is usu-
ally used as the convex surrogate of rank. Low-rank based methods 
have been successfully applied to applications including salient ob-
ject detection [20], segmentation and grouping [21], background 
subtraction [22], tracking [23], and 3D visual recovery [24]. How-
ever, LRR is unable to utilize the underlying local linear structure 
of data, which will result in that the constructed affinity matrix 
is usually dense and not block diagonal even under certain strong 
assumptions, e.g. independent subspaces.

According to the above analysis, the local distance based meth-
ods, e.g. k-NN, utilize the locality structure of data but lack the 
global property, while for the LRR method, the case is contrary. 
Ideally, if we assume that the subspaces are independent, the affin-
ity matrix should be close to block diagonal sparse matrix, with 
nonzero entries of each block corresponding to the data point pairs 
from the same subspace. In another word, the affinity graph should 
be both local and low-rank. Therefore, in this paper, we present an 
locality-constrained robust shape interaction (LNRSI) learning al-
gorithm. LNRSI integrates the local manifold structure of data into 
the low rank representation in a unified formulation, which lead to 
a sparse and low-rank affinity matrix. Compared with traditional 
low rank representation learning method, LNRSI can not only pur-
suit the global structure of data space by rank regularization, but 
also keep the locality manifold which is discriminative.

Compared with existing works, the main contributions of this 
paper include:

1. The proposed algorithm which integrates the local structure 
with the global robust shape interaction, guarantees the local-
ity and the low-rank property of the optimal affinity graph;

2. In this paper, we give the theoretic analysis of the clustering 
effect of the proposed algorithm, and we prove that the op-
timal affinity matrix obtained by our algorithm will be block-
diagonal under some mild conditions.

3. An efficient solution based on linearized alternating direc-
tion method with adaptive penalty (LADMAP) is built for our 
method.

The remainder of this paper is organized as follows: Section 2
reviews the related work. In section 3, the locality-constrained 
nonnegative robust shape interaction model is proposed, and the 
theoretical analysis is given to guarantee the good grouping effect. 

We also propose a practical solution by applying linearized alter-
nating direction method with adaptive penalty in section 3. The 
relationship with existing work is described in section 4 and the 
experimental results are shown in section 5. Finally, the concluding 
and remarks are given in section 6.

2. Related works

Given a set of the data points X = [X1, X2, · · · , Xn] ∈ Rm×n , 
where each sample Xi ∈ Rm is drawn from a subspace Sk , k =
1, · · · , p, where Sk means the k-th subspace, and p is the num-
ber of the different subspaces. The task of clustering is to cluster 
the data points Xi to their corresponding subspace correctly.

2.1. Robust Principle Component Analysis (RPCA)

The RPCA aims to recover the low-rank matrix X0 from the 
given observation matrix X corrupted by errors E0 (X = X0 + E0). 
Motivated by the advances in low-rank matrix analysis, RPCA can 
be solved by solving the following regularized rank minimization 
problem:

min
D,E

rank(D) + λ‖E‖0, s.t. X = D + E

where λ is arbitrary balanced parameter. This problem is NP-hard, 
and the research work [4] shows that if the rank of D is not too 
large and E is sparse, the optimization problem is equivalent to:

min
D,E

‖D‖∗ + λ‖E‖1, s.t. X = D + E

where ‖ · ‖∗ means the nuclear norm, which is the best convex 
envelope of the rank. The work [19] shows that under fairly gen-
eral conditions, D can be exactly recovered from X as long as E is 
sufficiently sparse (relative to the rank of D).

RPCA has been successfully applied to many machine learning 
and computer vision problems, such as video surveillance [25], face 
modeling [26], etc. However, the RPCA implicitly assumes that the 
underlying data structure is a single low-rank subspace. When the 
data is drawn from a union of multiple subspaces, Sk, k = 1, · · · , p, 
it actually treats the data as being sampled from a single subspace 
defined by S = ⋃p

k=1 Sk .

2.2. Low rank representation (LRR)

LRR aims at finding the lowest-rank representation of a collec-
tion of vectors jointly. It can be seen as a generalization of RPCA. 
LRR could handle well the data drawn from a union of multiple 
subspaces. Compared with RPCA, LRR better captures the multiple 
subspace structure, and gives a more effective tool for robust sub-
space clustering.

For the noiseless case, LRR takes the data itself as a dictionary 
and seeks the representation matrix with the lowest rank.

min
Z

rank(Z), s.t. X = X Z

Due to the fact that the rank function is not convex and difficult 
to be optimized, the above optimization problem can be relaxed to 
the following convex optimization:

min
Z

‖Z‖∗, s.t. X = X Z

where ‖ ·‖∗ means the nuclear norm. The nuclear norm of a matrix 
equal to the sum of the singular values of this matrix.

LRR can also handle noisy data by adding a �2,1-norm term to 
the objective function in order to make the noise column sparse.

min
Z

‖Z‖∗ + λ‖E‖2,1, s.t. X = X Z + E
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