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This paper considers the problem of recovering frequency sparse signals which consist of a few
complex sinusoids and estimating the frequency components from 1-bit quantized measurements. Unlike
previous grid-based 1-bit compressive sensing approaches, we present a gridless convex method to
recover frequency sparse signals form 1-bit measurements via binary atomic norm minimization (BANM).
And the frequencies can take any continuous values in the frequency domain, which overcomes grid
mismatches caused by the off-grid problem. We further propose a dual polynomial method to achieve
continuous frequency estimation. Moreover, we present an efficient algorithm to solve BANM for large
scaled problem. Numerical experiments are performed to demonstrate the effectiveness of our method

compared with the grid-based compressive sensing algorithm.
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1. Introduction

Spectral analysis of signals which are superposition of complex
exponentials is a fundamental problem in statistical signal process-
ing. The line spectral estimation problem plays an important role
in wide applications such as radar imaging, communications, spec-
troscopy, astronomy and so on. In this paper, we consider a signal
to be observed is constructed as follows:

K
Xp=> sl j=0,... ,N-1 (1)
k=1

where i = /=1, fi €[0, 1) denotes the normalized frequency to be
estimated and s € C represents the unknown complex amplitude
of the kth sinusoidal component. The model order K < N is usually
unknown as well in practice. Many methods have been proposed
to deal with the frequency estimation problem. Polynomial inter-
polation using Prony’s method can exactly extract the frequency
components from 2K samples. However, the performance is of-
ten sensitive to the polynomial root finding. The nonlinear least
squares (NLS) method is based on the nonlinear regression model
[1]. It determines the unknown parameters by minimizing a non-
convex function, which is hard to provide guarantee of global op-
timization. Multiple signal classification (MUSIC) is another classic
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method for frequency estimation, which is based on the eigenvalue
decomposition of covariance of the signal [2]. The methods men-
tioned above also require the information of the model order K,
which is not easy to obtain in practice.

In the past decade, compressive sensing (CS) theory has
achieved significant success in signal processing area and infor-
mation theory [3]. Based on sparse signal representation, several
methods have been developed for frequency estimation. In this
kind of methods, the signal has to be sparsely represented under a
finite dictionary. So the continuous frequency component has to be
discretized into a finite set of grids, and the true frequencies are
assumed to be on the grid points. However, if the frequencies do
not fall onto the grid point, the basis mismatch problem will lead
to the degradation of the performance [4,5]. Although using dense
grid will alleviate the basis mismatch, it will lead to higher coher-
ent matrix which violates the restricted isometry property (RIP)
[6]. There are also many grid-based methods to deal with this off-
grid problem. Many of them jointly estimate the new grid during
the algorithms [7-9]. Despite of the grid-based algorithms, several
gridless sparse methods have been proposed for line spectral es-
timation recently. Motivated by the concept of atomic norm [10,
11] provides exactly recovered condition for noiseless case. In the
presence of missing data, an atomic norm minimization method is
introduced in [12]. In [13-15], the noisy case is studied. In par-
ticular, in the noisy case with incomplete data, [15] proposes a
gridless version of SPICE [16] for line spectral estimation.
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The conventional CS framework assumes that the observation
of the signal is linear, i.e.

y=Ax (2)

where A € RM*N is the measurement matrix, and y € CM is the

measurement vector. Thus each of the measurements has infinite
bit precision. In practice, the measurements have to be quantized
to finite bit depth. In the quantized compressive sensing (QCS), we
have

¥ =Q(Re(AX)) +i- Q(Im(Ax')) (3)

where Re(.) and Im(.) return the real part and imaginary part
of a vector respectively, and Q (.) performs quantization opera-
tor element-wisely on the vector. Thus, each continuous value is
mapped to a discrete value in a finite set. The effect of quantiza-
tion is studied by [17-19].

Furthermore, recent studies have shown that stable signal re-
covery can be guaranteed even if the measurements are quantized
to one bit. In this case, the analog-to-digital converter (ADC) be-
comes a comparator, which is fast, inexpensive, with the charac-
teristics of low power consumption and robust to amplification
distortion. These appealing benefits have attracted many studies
on it. In this setting, the observation of the signal becomes

y =sign(Re(Ax')) + i - sign(Im(Ax’)) “)

where sign(z) = z/|z| performs element-wisely on the vector for
z # 0 and define sign(0) = 1. Since the scaling information of
the measurements is totally lost, the goal is to recover the sig-
nal on the unit hyper-sphere. The 1-bit CS framework was first
studied in [20]. Following that, many approaches have been de-
veloped, including greedy method [21], hard thresholding method
[22], convex relaxation method [23,24], trust region method [25],
Bayesian inference [26,27] and other methods [28,29]. The meth-
ods mentioned above all assume that the signal can be sparsely
represented by a discrete dictionary, which suffers from the basis
mismatch problem in practice.

In this paper, we consider the problem of recovering a fre-
quency sparse signal and extracting its frequency components
from 1-bit quantized measurements. Motivated by the studies on
atomic norm, we develop a new gridless 1-bit compressive sensing
method for line spectral estimation. We propose a convex approach
for signal recovery, denoted as binary atomic norm minimization
(BANM). We also develop a dual polynomial method to extract the
frequency components of the signal, which is efficient and does
not require the model order as prior information. Furthermore, we
provide an effective method for solving BANM via the Alternating
Direction Method of Multipliers (ADMM) [30].

The rest of the paper is organized as follows. Section 2 intro-
duces the convex gridless approach for 1-bit spectral compressive
sensing. Section 3 provides the dual polynomial method to achieve
the estimation of the continuous-valued frequency components.
Section 4 presents an effective algorithm for solving BANM. Nu-
merical experiments are provided in Section 5 to verify the per-
formance of BANM, and we make conclusions of this paper in
Section 6.

2. Binary atomic norm minimization for continuous
compressive sensing

Let us first recall the existing grid-based 1-bit CS methods for
real-valued signal. For a real-valued sparse signal z € RN and a
measurement matrix A € RM*N, the observation can be described
as

y =sign(Az) (5)

In order to recover z from the measurement vector y, the opti-
mization problem can be formulated as

z=argmin|z|o
s.t.  sign(Az) = sign(y)
213 =1 (©)

The optimization problem (6) is NP-hard and the constraint
||z\|% =1 is nonconvex, which makes it intractable to solve. In [23],
Plan provided a convex approach to achieve stable recovery:

zZ=argmin|z|
st. YAz>0
Az]l; =1 (7

where Y = diag(y) denotes the diagonal matrix with y being its
diagonal elements. Although the algorithm is designed for solving
the real-valued problem, it can be easily extended to complex-
valued case.

Suppose a spectral sparse signal & is defined as (1). Consider
the problem of recovering ¥ from the 1-bit quantized measure-
ment y. The quantization is described in (4). In order to utilize the
grid-based method, we first discretize the continuous frequency
domain [0, 1) into finite grids. Let D € CN*P be the discrete sparse
dictionary with element of m row n column being

Dm - ei27r(m—1)(n—1)/P (8)
Then we assume X' can be sparsely represented as
X =D¢ (9)

where 6 represents the discretized frequency components of x'. In
a similar manner, we can extend the grid-based convex method to
complex-valued case:

N

0 = argmin |01
st. Re(Y)-Re(AD§) >0
Im(Y) - Im(AD6) > 0
|Re(ADO)||, + |Im(ADO) |, =1 (10)

The objective function encourages a sparse solution of . The first
and second constraints enforce the consistency with the measure-
ments, and the last constraint serves to prevent the trivial zero
solution and also makes (10) a convex problem. We denote (10)
as grid-based I; method. Once the optimal value 6 is obtained, we
get the estimation of X by ¥ = D6.

As discussed before, this grid-based method also suffers from
the basis mismatch problem if the true frequencies do not coincide
with the discrete sparse dictionary D. Recently, motivated by the
concept of atomic norm [10], some gridless methods have been
studied. Let A be the set of atoms which construct the signal. The
atomic norm | - ||4 is defined by identifying its unit ball with the
convex hull of A

[|%]l.4 = inf{t > 0:x € tconv(A)}
=inf{26k1X=chak, ¢ >0, akeA} (11)
k k
and the dual norm of the atomic norm is given by
%)% = sup{(x,a)r : @ € A} (12)

The real inner product (x,a)r is defined by (x,a)r = Re({x,a)) =
Re(a x), where the superscript H denotes the conjugate transpose.
In our application, the set of atoms A is given by

A=la(f,¢): f€l0,1),¢ €[0,2m)} (13)
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