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This paper considers the problem of recovering frequency sparse signals which consist of a few 
complex sinusoids and estimating the frequency components from 1-bit quantized measurements. Unlike 
previous grid-based 1-bit compressive sensing approaches, we present a gridless convex method to 
recover frequency sparse signals form 1-bit measurements via binary atomic norm minimization (BANM). 
And the frequencies can take any continuous values in the frequency domain, which overcomes grid 
mismatches caused by the off-grid problem. We further propose a dual polynomial method to achieve 
continuous frequency estimation. Moreover, we present an efficient algorithm to solve BANM for large 
scaled problem. Numerical experiments are performed to demonstrate the effectiveness of our method 
compared with the grid-based compressive sensing algorithm.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Spectral analysis of signals which are superposition of complex 
exponentials is a fundamental problem in statistical signal process-
ing. The line spectral estimation problem plays an important role 
in wide applications such as radar imaging, communications, spec-
troscopy, astronomy and so on. In this paper, we consider a signal 
to be observed is constructed as follows:

x′
j =

K∑
k=1

skei2π j fk , j = 0, . . . , N − 1 (1)

where i = √−1, fk ∈ [0, 1) denotes the normalized frequency to be 
estimated and sk ∈ C represents the unknown complex amplitude 
of the kth sinusoidal component. The model order K < N is usually 
unknown as well in practice. Many methods have been proposed 
to deal with the frequency estimation problem. Polynomial inter-
polation using Prony’s method can exactly extract the frequency 
components from 2K samples. However, the performance is of-
ten sensitive to the polynomial root finding. The nonlinear least 
squares (NLS) method is based on the nonlinear regression model 
[1]. It determines the unknown parameters by minimizing a non-
convex function, which is hard to provide guarantee of global op-
timization. Multiple signal classification (MUSIC) is another classic 
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method for frequency estimation, which is based on the eigenvalue 
decomposition of covariance of the signal [2]. The methods men-
tioned above also require the information of the model order K , 
which is not easy to obtain in practice.

In the past decade, compressive sensing (CS) theory has 
achieved significant success in signal processing area and infor-
mation theory [3]. Based on sparse signal representation, several 
methods have been developed for frequency estimation. In this 
kind of methods, the signal has to be sparsely represented under a 
finite dictionary. So the continuous frequency component has to be 
discretized into a finite set of grids, and the true frequencies are 
assumed to be on the grid points. However, if the frequencies do 
not fall onto the grid point, the basis mismatch problem will lead 
to the degradation of the performance [4,5]. Although using dense 
grid will alleviate the basis mismatch, it will lead to higher coher-
ent matrix which violates the restricted isometry property (RIP) 
[6]. There are also many grid-based methods to deal with this off-
grid problem. Many of them jointly estimate the new grid during 
the algorithms [7–9]. Despite of the grid-based algorithms, several 
gridless sparse methods have been proposed for line spectral es-
timation recently. Motivated by the concept of atomic norm [10,
11] provides exactly recovered condition for noiseless case. In the 
presence of missing data, an atomic norm minimization method is 
introduced in [12]. In [13–15], the noisy case is studied. In par-
ticular, in the noisy case with incomplete data, [15] proposes a 
gridless version of SPICE [16] for line spectral estimation.
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The conventional CS framework assumes that the observation 
of the signal is linear, i.e.

y = Ax′ (2)

where A ∈ R M×N is the measurement matrix, and y ∈ C M is the 
measurement vector. Thus each of the measurements has infinite 
bit precision. In practice, the measurements have to be quantized 
to finite bit depth. In the quantized compressive sensing (QCS), we 
have

y = Q
(
Re

(
Ax′)) + i · Q

(
Im

(
Ax′)) (3)

where Re(.) and Im(.) return the real part and imaginary part 
of a vector respectively, and Q (.) performs quantization opera-
tor element-wisely on the vector. Thus, each continuous value is 
mapped to a discrete value in a finite set. The effect of quantiza-
tion is studied by [17–19].

Furthermore, recent studies have shown that stable signal re-
covery can be guaranteed even if the measurements are quantized 
to one bit. In this case, the analog-to-digital converter (ADC) be-
comes a comparator, which is fast, inexpensive, with the charac-
teristics of low power consumption and robust to amplification 
distortion. These appealing benefits have attracted many studies 
on it. In this setting, the observation of the signal becomes

y = sign
(
Re

(
Ax′)) + i · sign

(
Im

(
Ax′)) (4)

where sign(z) = z/|z| performs element-wisely on the vector for 
z �= 0 and define sign(0) = 1. Since the scaling information of 
the measurements is totally lost, the goal is to recover the sig-
nal on the unit hyper-sphere. The 1-bit CS framework was first 
studied in [20]. Following that, many approaches have been de-
veloped, including greedy method [21], hard thresholding method 
[22], convex relaxation method [23,24], trust region method [25], 
Bayesian inference [26,27] and other methods [28,29]. The meth-
ods mentioned above all assume that the signal can be sparsely 
represented by a discrete dictionary, which suffers from the basis 
mismatch problem in practice.

In this paper, we consider the problem of recovering a fre-
quency sparse signal and extracting its frequency components 
from 1-bit quantized measurements. Motivated by the studies on 
atomic norm, we develop a new gridless 1-bit compressive sensing 
method for line spectral estimation. We propose a convex approach 
for signal recovery, denoted as binary atomic norm minimization 
(BANM). We also develop a dual polynomial method to extract the 
frequency components of the signal, which is efficient and does 
not require the model order as prior information. Furthermore, we 
provide an effective method for solving BANM via the Alternating 
Direction Method of Multipliers (ADMM) [30].

The rest of the paper is organized as follows. Section 2 intro-
duces the convex gridless approach for 1-bit spectral compressive 
sensing. Section 3 provides the dual polynomial method to achieve 
the estimation of the continuous-valued frequency components. 
Section 4 presents an effective algorithm for solving BANM. Nu-
merical experiments are provided in Section 5 to verify the per-
formance of BANM, and we make conclusions of this paper in 
Section 6.

2. Binary atomic norm minimization for continuous 
compressive sensing

Let us first recall the existing grid-based 1-bit CS methods for 
real-valued signal. For a real-valued sparse signal z ∈ R N and a 
measurement matrix A ∈ R M×N , the observation can be described 
as

y = sign(Az) (5)

In order to recover z from the measurement vector y, the opti-
mization problem can be formulated as

ẑ = arg min‖z‖0

s.t. sign(Az) = sign(y)

‖z‖2
2 = 1 (6)

The optimization problem (6) is NP-hard and the constraint 
‖z‖2

2 = 1 is nonconvex, which makes it intractable to solve. In [23], 
Plan provided a convex approach to achieve stable recovery:

ẑ = arg min‖z‖1

s.t. Y Az ≥ 0

‖Az‖1 = 1 (7)

where Y = diag(y) denotes the diagonal matrix with y being its 
diagonal elements. Although the algorithm is designed for solving 
the real-valued problem, it can be easily extended to complex-
valued case.

Suppose a spectral sparse signal x′ is defined as (1). Consider 
the problem of recovering x′ from the 1-bit quantized measure-
ment y. The quantization is described in (4). In order to utilize the 
grid-based method, we first discretize the continuous frequency 
domain [0, 1) into finite grids. Let D ∈ C N×P be the discrete sparse 
dictionary with element of m row n column being

Dm,n = ei2π(m−1)(n−1)/P (8)

Then we assume x′ can be sparsely represented as

x′ = Dθ (9)

where θ represents the discretized frequency components of x′ . In 
a similar manner, we can extend the grid-based convex method to 
complex-valued case:

θ̂ = arg min‖θ‖1

s.t. Re(Y ) · Re(A Dθ) ≥ 0

Im(Y ) · Im(A Dθ) ≥ 0∥∥Re(A Dθ)
∥∥

1 + ∥∥Im(A Dθ)
∥∥

1 = 1 (10)

The objective function encourages a sparse solution of θ . The first 
and second constraints enforce the consistency with the measure-
ments, and the last constraint serves to prevent the trivial zero 
solution and also makes (10) a convex problem. We denote (10)
as grid-based l1 method. Once the optimal value θ̂ is obtained, we 
get the estimation of x̂ by x̂ = D θ̂ .

As discussed before, this grid-based method also suffers from 
the basis mismatch problem if the true frequencies do not coincide 
with the discrete sparse dictionary D . Recently, motivated by the 
concept of atomic norm [10], some gridless methods have been 
studied. Let A be the set of atoms which construct the signal. The 
atomic norm ‖ · ‖A is defined by identifying its unit ball with the 
convex hull of A
‖x‖A = inf

{
t > 0 : x ∈ t conv(A)

}
= inf

{∑
k

ck : x =
∑

k

ckak, ck ≥ 0, ak ∈ A
}

(11)

and the dual norm of the atomic norm is given by

‖x‖∗
A = sup

{〈x,a〉R : a ∈ A
}

(12)

The real inner product 〈x, a〉R is defined by 〈x, a〉R = Re(〈x, a〉) =
Re(aH x), where the superscript H denotes the conjugate transpose. 
In our application, the set of atoms A is given by

A = {
a( f , φ) : f ∈ [0,1),φ ∈ [0,2π)

}
(13)
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