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Simultaneous sparse approximation is a generalization of the standard sparse approximation, for 
simultaneously representing a set of signals using a common sparsity model. Distributed compressive 
sensing (DCS) framework has utilized simultaneous sparse approximation for generalizing compressive 
sensing to multiple signals. DCS finds the sparse representation of multiple correlated signals from 
compressive measurements using the common + innovation signal model. However, DCS is limited for 
joint recovery of a large number of signals since it requires large memory and computational time. In 
this paper, we propose a new hierarchical algorithm to implement the joint sparse recovery part of 
DCS more efficiently. The proposed approach is based on partitioning the input set and hierarchically 
solving for the sparse common component across these partitions. The numerical evaluation of the 
proposed method shows the decrease in computational time over DCS with an increase in reconstruction 
error. The proposed algorithm is evaluated for two different applications. In the first application, the 
proposed method is applied to video background extraction problem, where the background corresponds 
to the common sparse activity across frames. In the second application, a common network structure is 
extracted from dynamic functional brain connectivity networks.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Sparse signal approximation refers to the representation of a 
signal as a linear combination of a small subset of elements of a 
dictionary [1]. Sparse signal approximation usually considers one 
signal at a time, not taking into account the correlation within a 
group of signals. Simultaneous sparse approximation, a.k.a. joint 
sparse recovery, on the other hand, finds sparse representations 
of multiple signals collected through sensors monitoring the same 
environment simultaneously using a common dictionary [2–4]. 
Joint sparse recovery has been used in many applications such 
as sensor networks [5], neuroelectromagnetic imaging [6,7], source 
localization [8], and image restoration [9].

Different approaches to finding the common sparse representa-
tion among a set of signals have been proposed. Tropp et al. [2]
proposed a greedy algorithm, i.e. simultaneous orthogonal match-
ing pursuit (S-OMP), which extends orthogonal matching pursuit to 
joint sparse recovery. In [3], a convex relaxation approach was used 
to find the joint sparse approximation of multiple signals. Blan-
chard et al. [10] extended well-known sparse approximation meth-
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ods, iterative hard thresholding, normalized iterative hard thresh-
olding, hard thresholding pursuit, normalized hard thresholding 
pursuit, and Compressive Sampling Matching Pursuit, to the joint 
sparse recovery problem.

A closely related line of work was proposed in the compres-
sive sensing community. Distributed compressive sensing (DCS) 
is an extension of compressive sensing to multiple observations 
problem [11,12]. It simultaneously finds the sparse representation 
of a set of compressively sensed signals by assuming a common 
+ innovation component model for signals. The common + in-
novation component model makes DCS a suitable tool to extract 
common component of highly correlated signals in many applica-
tions such as video processing [13–15] and time-varying networks 
[16]. However, a major problem with using DCS to extract the 
common component of a set of signals is that the size of the dic-
tionary increases dramatically with the number of signals. For a 
set of J N-dimensional signals, the size of the required dictionary 
in DCS method to find the common component is J N × ( J + 1)N , 
which demands huge memory and computational resources. In the 
joint sparse recovery literature, several methods for addressing this 
high computational complexity have been introduced. Lee et al.
[17] proposed orthogonal subspace matching pursuit (OSMP) for 
a new joint sparse recovery method, SA-MUSIC. OSMP is used in 
the partial support recovery step of SA-MUSIC to provide a com-
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putationally efficient solution to joint sparse recovery with a per-
formance guarantee. In [18], the performance of the joint sparse 
recovery of infinite measurement vectors (IMV), an infinite set of 
jointly sparse vectors, is improved. Instead of discretizing the en-
tire infinite set of sparse vectors in IMV models, a reduced finite-
dimensional problem is derived from which the common nonzero 
location set can be inferred exactly. In [19], l1,2-norm penalty is 
used to enforce joint sparsity on the signals. The accelerated prox-
imal gradient finds efficiently the joint sparse representation of the 
set of signals. Hyder and Mahata [20] proposed joint l2,0 approx-
imation algorithm (JLZA), an extension of the zero-norm approxi-
mation algorithm, to decrease the computational complexity while 
ensuring the robustness to the measurement noise. Even though 
these algorithms have improved the computational complexity of 
simultaneous sparse recovery problem, they all assume that the 
set of signals is sparse with respect to the same dictionary and the 
locations of the nonzero entries of the vector coefficient are the 
same among all signals while their values are different. However, 
DCS focuses on a more general problem with the assumption that 
the collection of signals have a common sparse component with 
respect to a basis while the innovation components are sparse with 
respect to another dictionary with the locations of the nonzero en-
tries of the coefficient vector being different. Thus, these methods 
are not directly applicable to DCS.

In this paper, we propose a hierarchical algorithm to implement 
the joint sparse recovery part of DCS more efficiently. The pro-
posed algorithm, called hierarchical distributed compressive sens-
ing (H-DCS), partitions the set of signals into a small number of 
subsets, and finds the common component of each subset sep-
arately. The common components of the subsets are then used 
as a new set of signals to find the common component across 
all signals. The error bound and the computational complexity of 
DCS and hierarchical DCS are derived and compared, showing how 
hierarchical DCS outperforms DCS in terms of computational com-
plexity. However, the error bound of hierarchical DCS is slightly 
larger than DCS due to the aggregated approximation errors across 
the iterations. Although this paper is focused on the two-stage im-
plementation of H-DCS, it can be easily extended to more stages.

The proposed algorithm is evaluated for two different applica-
tions. In the first application, we consider the video background 
extraction problem which is of great importance in many au-
tomatic video content analysis applications such as surveillance 
video coding [21], motion detection [22], object tracking [23,24], 
etc. Video background extraction aims to separate the moving ob-
jects, a.k.a. foreground, from the static objects, a.k.a. background, 
in order to facilitate the tracking of moving objects. Even though 
the subsequent steps of the background extraction are of more 
interest, the accuracy of the overall system depends on the per-
formance of background extraction. Since the background scene 
does not change noticeably over time, it has a sparse represen-
tation with respect to a frequency basis such as DCT. Thus, H-DCS 
with discrete cosine transform (DCT) basis is used to extract the 
background scene.

In the second application, a method based on H-DCS is pro-
posed to track dynamic functional connectivity brain networks 
over time. Functional connectivity (FC) has been extensively used 
to understand cognitive brain processes [25,26]. One way to study 
FC networks in detail is through neuronal time series recorded 
from electroencephalogram (EEG) [25]. These time series are trans-
formed to connectivity networks through bivariate synchronization 
measures between brain regions [27], where nodes correspond to 
distinct brain regions and edges to functional connectivity between 
them [28–30]. Evidence points to the fact that FC networks contin-
uously form and destruct over multiple short-time intervals due 
to task demands, learning and anesthesia [31–33]. It is shown 
that these time-varying FC networks consist of a small number 

of distinct FC states corresponding to quasi-stationary time inter-
vals [34,35]. Thus, one way to track the dynamics of time-varying 
FC networks is to detect the change points in time where the FC 
networks change. FC networks generally consist of a background 
activity, which is common across all time steps, and a foreground 
network which corresponds to the transient activations [36]. The 
background activity is similar to the default mode network (DMN) 
identified from resting state fMRI, and varies slowly across time 
such that it can be assumed to be sparse with respect to frequency 
domain bases. Thus, the background activity (background FC pat-
tern) is separated from the foreground by applying H-DCS with 
DCT as the basis of the common component. Since the innovation 
components are unique to each FC network, the dissimilarity of 
the innovation components of the consecutive FC networks is em-
ployed to detect the change points in the network structure. Once 
change points are detected, the time intervals can be summarized 
to obtain their common FC pattern through another stage of H-DCS 
algorithm.

2. Distributed compressive sensing

Distributed compressive sensing assumes that signals acquired 
across multiple sensors are sparse in a collection of bases, i.e. the 
set of signals is jointly sparse. Due to the inter-signal correlation, 
jointly sparse signals are usually assumed to be composed of a 
common sparse component which is shared by all signals, and an 
innovation component which is unique to each signal [37]. The 
encoding part of distributed compressive sensing is not different 
from compressive sensing in that each signal is separately pro-
jected onto some random, incoherent bases. However, the decoding 
is based on simultaneous sparse recovery of all signals, which can 
be used for various purposes including the common component 
extraction. In this paper, we only focus on the sparse recovery part 
of distributed compressive sensing.

2.1. Joint sparsity model

Let’s assume that the set of signals � = {x j ∈ R
N ; ∀ j ∈ {1, 2,

. . . , J }} are jointly sparse. It is assumed that there is an inter-signal 
correlation among the signals. The joint sparsity model (JSM) [38,
12], which includes a common component zc ∈R

N and an innova-
tion component z j ∈ R

N , can be written as:

x j = zc + z j, j = 1,2, . . . , J . (1)

The common component represents the inter-signal correlation 
among the signals while the innovation component is unique to 
each signal. The common and innovation components of the set of 
signals � are sparse with respect to two different sets of bases, φc
and φ j , respectively, as:

zc = φcθ c,

z j = φ jθ j, j ∈ {1,2, . . . , J }, (2)

where θ c and θ j are the coefficient vectors, and the bases φc and 
φ j are orthogonal. Since the signal x j is sparse, the coefficient vec-
tors have a small number of nonzero entities, ‖θ c‖0 = Kc � N and 
‖θ j‖0 = K j � N .

In order to recover the sparse representation of the set of sig-
nals �, all signals are stacked to form a single optimization prob-
lem. Eq. (3) shows the compact representation of all signals and 
their sparse representations in matrix format.
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