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In the gradient dependent denoising methods based on partial differential equation, the process of 
denoising is controlled through the gradient operation. Hence, the edges are preserved while texture 
and fine details (having oscillatory nature, the same as noise) are degraded. This paper proposes an 
algorithm which adaptively selects diffusion coefficient using the residual local power and the amount of 
the gradient magnitude. Since texture regions correspond to large values of the local power of the residue, 
this strategy permits to simultaneously preserve the edges, textures, and fine details. To evaluate the 
proposed method, a variety of experiments are carried out confirming the performance of the proposed 
algorithm with respect to peak signal-to-noise ratio, mean structural similarity, universal quality index, 
visual information fidelity and visual quality.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Image denoising is an important step in machine vision and 
image processing. Since noise is related to high frequencies, it is 
too difficult to remove it while preserving the important features. 
This problem has attracted an extensive interest and is still a valid 
challenge [1,2]. One of the best techniques for image denoising is 
based on partial differential equation (PDE) [3]. In the linear form, 
the diffusion coefficient is a constant that leads to isotropic diffu-
sion. It is equivalent to filtering the image by Gaussian kernel with 
a time varying standard deviation, therefore it blurs the edges to 
some extent [4]. To overcome this problem, anisotropic diffusion 
was proposed by Perona and Malik (PM) [5]. In the PM nonlin-
ear diffusion, the diffusion coefficient is introduced as a decreasing 
function of gradient magnitude of the image that varies with time 
and space. At the edges where the gradient is large, the diffusion 
coefficient becomes small resulting in edge preservation. On the 
other hand, in the smooth regions (where the gradient is small) 
the large diffusion coefficient leads to strong diffusion removing 
noise. Sharpening occurs for the regions with a higher magnitude 
of gradient while blurring is observed for the rest. Hence, the PM 
equation preserves the edges and even enhances them in some 
cases while removing noise.

PM equation has stimulated a great deal of interest in many im-
age processing applications especially for image denoising [6–12]. 
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It is commonly employed as a tool for segmentation, denoising, 
edge detection, inpainting, and enhancement of images [13–16].

Most of the denoising methods assume that noise is oscilla-
tory and the image is smooth or piecewise smooth. Therefore, 
these methods try to separate the smooth parts from the oscil-
latory ones. The problem is that textures and fine details in the 
image have oscillatory nature similar to noise. As a result, they are 
compromised during the noise removing process [17]. Gilboa et al. 
[18] proposed a ramp preserving complex diffusion which uses 
imaginary part of image as an approximation for Laplacian to con-
trol the diffusion. Barbu et al. [19] discussed a variational model 
based on minimization of a convex function of the gradient under 
minimal growth conditions. It smoothens the degraded image and 
preserves the edges. A directed diffusion equation using wavelet 
soft thresholding was introduced by Xiaoli et al. [20] to investigate 
the edges and details blurring issues. To avoid diffusion perpen-
dicular to edge direction, Wang et al. [21] introduced a modified 
PM model using directional Laplacian. Prasath et al. [22] suggested 
a weighted anisotropic diffusion to reduce blurring and staircas-
ing effects. Xu et al. [23] suggested an adaptive thresholding in PM 
diffusion coefficient to better handle the diffusion as time elapsed. 
A new diffusion coefficients proposed by Tebini et al. [24,25] for 
better control of the diffusion process in regions containing edge. 
Wang et al. [26] proposed new second and fourth order anisotropic 
equations for efficient denoising. Wang et al. suggested a modi-
fied ROF [27] model which diffuses along with isophotes for better 
edge preserving [28]. All of these methods are gradient dependent 
where the gradient controls the diffusion process and therefore de-
grades texture and fine details.
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To overcome these drawbacks, a new algorithm based on the 
PM model is proposed in this paper. Since the diffusion coefficient 
in PM process depends only on the edge detector, some texture 
degradation will happen. For texture preserving, we introduce a 
texture detection operator by applying PM process to the noisy im-
age and calculating the local variance of residue. The residual local 
variance is adaptively scaled during the time and added to the dif-
fusion coefficient argument of PM model to control it. Accordingly, 
the diffusion coefficient is small in textures and fine details as well 
as the edges and consequently these regions are preserved.

The organization of the paper is as follows: In Section 2, some 
traditional benchmarks and state-of-the-art methods are reviewed 
in brief. We use these methods to evaluate the proposed method 
in a comparative study later. Section 3 is devoted to the proposed 
algorithm. The experimental results are given in Section 4 and fi-
nally the conclusion is presented in Section 5.

2. Related works

In the following subsections some popular PDE-based methods 
and several state-of-the-art denoising algorithms are reviewed in 
brief. These methods will be used for comparing the results.

2.1. PM nonlinear diffusion

Perona and Malik (PM) [5] proposed an anisotropic diffusion for 
applications in image processing:

It = div
(
c(x, y, t)∇ I

) = c(x, y, t)�I + ∇c.∇ I, I|t=0 = I0 (1)

where div, ∇ , and � denote divergence, gradient, and Laplacian 
operators with respect to space variables, respectively. Also, I0 is 
the input noisy image, I is the denoised image, and c stands for the 
diffusion coefficient. The coefficient c is a positive decreasing func-
tion of the gradient magnitude. Therefore, in the edges where the 
gradient magnitude is large, the diffusion coefficient is small and 
as a result, the blurring effect is negligible. Similarly, in the smooth 
regions where the gradient magnitude is small, the diffusion coef-
ficient is large and consequently the blurring effect is significant. 
The following diffusion coefficient is proposed by PM [5]:

c
(|∇ I|) = 1

1 + (
|∇ I|

k )2
(2)

where k is a threshold. For |∇ I| > k sharpening occurs while 
|∇ I| < k results in blurring. The PM performance depends on its 
parameters such as stopping time and smoothing threshold [29]. 
Catte et al. [30] demonstrated the ill-posedness of PM equation 
and proposed a regularized version wherein the diffusion coeffi-
cient introduced as a function of smoothed gradient:

It = div
(
c
(|∇ I ∗ Gσ |)∇ I

)
(3)

where ∗ and Gσ are the convolution operator and Gaussian ker-
nel with standard deviation σ , respectively. Although [30] solves a 
deep theoretical problems related to PM algorithm, the character-
istics of this process essentially remain. The PM method preserves 
the edges and even enhances them in some cases, but it leads to 
isolated points and texture degradation [3].

2.2. ROF

Due to the oscillations caused by noise, the total variation (TV) 
norms of original and noisy image are significantly different. Rudin, 
Osher and Fatemi (ROF) [27] minimized the total variation of the 
noisy image subject to the constraints involving the statistics of 
noise. By assuming that noise is additive with zero mean and 
known power σ 2

n , the minimization problem becomes:

min
I

∫
Ω

(|∇ I|)dxdy subject to
1

|Ω|
∫
Ω

(I − I0)
2dxdy = σ 2

n (4)

ROF method minimizes the total variation of the image and 
strongly removes its oscillations, therefore, some texture informa-
tion is removed in addition to noise.

2.3. GSZ

Gilboa, Sochen, and Zeevi (GSZ) [31] reformulated Eq. (4) to 
preserve the textures:

min
I

∫
Ω

(|∇ I|)dxdy subject to P R̂(x, y) = S(x, y) (5)

where P R̂ presents the local power of (I − I0) and S(x, y) ≥ 0 is 
defined as follows:

S(x, y) = σ 4
n

P R(x, y)
(6)

where P R is the local power of residue of denoised image by ROF 
(see [31] for more details). GSZ runs ROF twice and preserves the 
texture.

2.4. Xiaoli method

Xiaoli et al. [20] proposed a directed diffusion equation. In this 
method, an initial approximation of the original image is calculated 
and then the denoised image is achieved by applying the following 
equation:

It = α1b div
(
c
(|∇ I ∗ Gσ |).∇ I

) + α2 I div
(
c
(|∇b ∗ Gσ |).∇b

)
(7)

where α1 and α2 are two coefficients that avoid edge smoothing 
and b is the initial approximation driven by wavelet soft thresh-
olding denoising method.

2.5. MPM

Wang et al. [21] discussed a modified PM (MPM) model using 
directional Laplacian in which the diffusion is directed along the 
edge:

It =
[

∂

∂x
(cm Ix)N2

1 + ∂

∂ y
(cm I y)N2

2

]

+
[

∂

∂x
(cm I y) + ∂

∂ y
(cm Ix)

]
N1N2 + αcm�I (8)

where the direction of diffusion is

N = (N1, N2) = (−∂ I0/∂ y, ∂ I0/∂x)/|∇ I| (9)

and the diffusion coefficient is cm = 1/
√

1 + (|∇ I|)2.

2.6. WWBAD

Prasath et al. [22] suggested a weighted and well-balanced 
anisotropic diffusion (WWBAD) as follows:

It = g div
(
cw

(
x, |∇ I|).∇ I

) − λ(1 − g)(I − I0) (10)

where g is an edge stopping function and cw includes weight func-
tion.



Download	English	Version:

https://daneshyari.com/en/article/4973987

Download	Persian	Version:

https://daneshyari.com/article/4973987

Daneshyari.com

https://daneshyari.com/en/article/4973987
https://daneshyari.com/article/4973987
https://daneshyari.com/

