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In this paper, we propose a multiple-model (MM) version of the extended target multi-Bernoulli (ET-MB) 
filter for estimating multiple maneuvering extended targets. A Gaussian mixture (GM) implementation of 
the MM-ET-MB filter for linear Gaussian models and a sequential Monte Carlo (SMC) implementation of 
the MM-ET-MB filter for nonlinear models are presented. Two numerical examples are provided to verify 
the effectiveness of the MM-ET-MB filter for estimating multiple maneuvering extended targets.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The objective of multi-target tracking is to simultaneously esti-
mate the number of targets and their states from a sequence of 
noisy measurements. Generally, each target is assumed to be a 
point target which produces at most one measurement per scan. 
This assumption is valid when the target is far away from the 
sensor or when the resolution of sensors is low. However, when 
the distance between the target and sensor is small, or when the 
resolution of sensors is high, the sensor may be able to resolve 
individual features on the target. Each target may generate more 
than one measurement per scan, and the assumption of point tar-
gets is not appropriate. Hence extended target tracking arises. An 
extended target is defined as a target which potentially generates 
more than one measurement per scan [1].

With multiple measurements, an inhomogeneous Poisson point 
process measurement model was proposed for tracking extended 
targets [2]. For this measurement model, the measurements are 
distributed around the target, and the number of measurements 
follows a Poisson distribution. Except for the target kinematical 
state, the target’s extension (i.e. size and shape) can also be esti-
mated with multiple measurements. The random matrix approach 
for modeling target’s extension has been proposed to tracking an 
ellipsoidal target [3]. Some improved random matrix approaches 
appeared in [4,5]. Extension of the random matrix approach to 
non-ellipsoidal extended target tracking has been suggested in 
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[6,7]. Other approaches to modeling the target’s extension were 
given in [8–10]. An overview of the group and extended target 
tracking approaches can be found in [11].

Among various multi-target tracking approaches, we are inter-
ested in the random finite set (RFS) approach. Compared with 
the traditional target tracking approaches [12], the RFS approach 
avoids explicit associations between measurements and targets 
[13]. Hence, the RFS approach provides another kind of meth-
ods for target tracking [14–16]. In the RFS approach, the states 
and measurements are treated as RFSs. With RFS models, Mahler 
has proposed the multi-target Bayes filter which propagates the 
multi-target posterior density recursively [17,14]. Since the opti-
mal multi-target Bayes filter is generally intractable, some approx-
imate multi-target Bayes filters were proposed, such as the prob-
ability hypothesis density (PHD) filter [17] which propagates the 
first order moment of the multi-target density, the cardinality PHD 
(CPHD) filter [18] which propagates the first order moment and 
cardinality distribution of the multi-target density, and the multi-
Bernoulli (MB) filter [14,19] which propagates the parameters of an 
MB distribution that approximate the multi-target density. These 
filters have been implemented by using Gaussian mixture (GM) 
and sequential Monte Carlo (SMC) techniques [13,20,21,19]. Using 
a Poisson model of extended target measurements [2], Mahler has 
derived the PHD filter for extended targets. The GM implemen-
tation of the ET-PHD filter was presented in [22,1]. A Gaussian 
inverse Wishart (GIW) implementation of the ET-PHD filter was 
proposed to jointly estimate the kinematic states and extensions 
of multiple extended targets [23]. The CPHD filter for extended 
targets was derived in [24], and the GM implementation of the 
ET-CPHD filter was proposed in [25]. By integrating the ET-CPHD 
filter with the random matrix approach, a Gamma Gaussian in-
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verse Wishart (GIWW) implementation of the ET-CPHD filter was 
proposed in [26]. The latest development is the GIWW implemen-
tation of the generalized labeled MB filter which is able to estimate 
the number of targets and their trajectories, kinematic states, mea-
surement rates, and extents [27].

Recently, the MB filter for extended targets was proposed in 
[28], and a GM implementation of the ET-MB filter for linear Gaus-
sian models was presented in [29]. For nonlinear non-Gaussian 
models, we have proposed an SMC implementation of the ET-MB 
filter [30]. Notice that, the ET-MB filter for maneuvering extended 
targets has not been considered so far. Maneuvering extended tar-
gets may switch between a set of models, and a single model is 
not general enough to accommodate maneuvering extended tar-
gets. The multiple-model (MM) (or jump Markov models) approach 
has proven to be an effective approach for maneuvering target 
tracking [31,32]. The standard MM-MB filter and its extensions for 
point targets have been proposed in [33–35]. Inspired by [33,34], 
in this paper, we extend the ET-MB filter to accommodate mul-
tiple maneuvering extended targets, and propose an MM version 
of the ET-MB filter. Then the GM and SMC implementations of 
the MM-ET-MB filter for linear Gaussian and nonlinear models are 
presented. Simulation results demonstrate that the MM-ET-MB fil-
ter is effective for estimating multiple maneuvering extended tar-
gets, and has high estimation accuracy than both the single model 
ET-MB and the standard MM-MB filters.

To summarize, the main contributions of this paper are sum-
marized as follows:

• propose an MM version of the ET-MB filter;
• give a GM implementation of the MM-ET-MB filter for linear 

Gaussian models;
• give an SMC implementation of the MM-ET-MB filter for non-

linear models;
• compare the MM-ET-MB filter with the single model ET-MB 

and MM-MB filters.

The rest of this paper is organized as follows. The MM version 
of the ET-MB filter is provided in Section 2. A GM implementation 
of the MM-ET-MB filter is given in Section 3. An SMC implementa-
tion of the MM-ET-MB filter is given in Section 4. Numerical results 
for two simulation scenarios are provided in Section 5. Finally, the 
conclusion is drawn in Section 6.

2. The MM-ET-MB filter

The MB filter propagates the parameters of an MB distribution 
that approximate the multi-target density. It propagates a time-
varying number of target tracks in time. Initially, the MB filter was 
proposed for handling point targets. Recently, based on a Poisson 
measurement model proposed by Gilholm [2], Zhang [28] has de-
rived the MB filter for extended targets, for more details see [28]. 
To date, the ET-MB filter for maneuvering extended targets has not 
been considered. In this section, we give a brief review of the MM 
approach and present an MM version of the ET-MB filter.

2.1. A brief review of the MM approach

The MM approach has proven to be an effective method for ma-
neuvering target tracking. In the MM approach [32], the target can 
switch between a set of motion models according to a Markovian 
process. Let xk ∈ Rn denote the kinematic state, zk ∈ Rm denote 
the measurement, and ok ∈ O denote the motion model at time k, 
where O denotes the discrete set of all models. Assume that the 
models follow a discrete Markovian chain process with transition 
probability tk|k−1, then the transition probability of the augmented 
state xk = (xk, ok) ∈ Rn ×O can be described by [36]

fk|k−1(xk|xk−1)

= fk|k−1(xk,ok|xk−1,ok−1)

= fk|k−1(xk|xk−1,ok)tk|k−1(ok|ok−1) (1)

The measurement likelihood is described by

gk(zk|xk) = gk(zk|xk,ok) (2)

2.2. The MM-ET-MB filter

Mahler has introduced the jump-Markov version of the multi-
target Bayes filter for maneuvering targets, and discussed several 
approaches for RFS-based filters in [37]. Some implementations 
of the MM RFS-based filters were presented in [36,38,33,34]. The 
estimation performance of the MM-PHD, MM-CPHD, and MM-MB 
filters for multiple maneuvering point targets has been compared 
in [33]. Following [37], a discrete random variable representing the 
motion model is augmented to the multi-target state under the RFS 
framework, i.e.

X = {x1, · · · ,xn} = {(x1,o1), · · · , (xn,on)} (3)

Similar to the description of a Bernoulli RFS in [19], the proba-
bility density of a Bernoulli RFS is

π(X) =
{

1 − r X = ∅
r · p(x,o) X = {x,o} (4)

where r denotes the existence probability and p denotes the prob-
ability density of a track.

An MB-RFS X is a union of a fixed number of independent 
Bernoulli RFSs X (i), i = 1, · · · , M , i.e., X = ⋃M

i=1 X (i) . The MB-RFS 
is described by {(r(i), p(i))}M

i=1, where r(i) denotes the existence 
probability of the ith hypothesized track, p(i) denotes the prob-
ability density of the ith hypothesized track, and M is the total 
number of hypothesized tracks. Following the MM approach, the 
probability density of the ith hypothesized track is described by a 
joint distribution p(i)(x, o). Hence the MM version of the MB-RFS 
is {(r(i), p(i)(x, o))}M

i=1. The MM-ET-MB filter is an extension of the 
ET-MB filter. The key of the MM-ET-MB filter is that the model 
variable is augmented to the probability density of each hypothe-
sized track. The prediction and update of the MM-ET-MB filter are 
presented as follow.

Proposition 1. If at time k − 1, the posterior multi-target density

πk−1 = {(r(i)
k−1, p(i)

k−1(x′,o′))}Mk−1
i=1 (5)

is given, then the predicted multi-target density is described by

πk|k−1 = {(r(i)
P ,k|k−1, p(i)

P ,k|k−1(x,o))}Mk−1
i=1 ∪ {(r(i)

�,k, p(i)
�,k(x,o))}M�,k

i=1

(6)

where

r(i)
P ,k|k−1 = r(i)

k−1〈p(i)
k−1(x′,o′), pS,k(x′,o′)〉 (7)

p(i)
P ,k|k−1(x,o) =

〈
fk|k−1(x|x′,o)tk|k−1(o|o′), p(i)

k−1(x′,o′)pS,k(x′,o′)
〉

〈
p(i)

k−1(x′,o′), pS,k(x′,o)
〉

(8)

〈·, ·〉 is the inner product defined between two real-valued functions α
and β by 〈α, β〉 = ∫

α(x)β(x)dx (or 〈α, β〉 = ∑∞
i=0 α(i)β(i), when α

and β are sequences), fk|k−1(·|x′, o) denotes a single target transition 
density given state x′ conditioned on model o at time k, pS,k(x′, o′) is 
the survival probability of a target conditioned on model o′ at time k, 
and {(r(i)

�,k, p(i)
�,k(x,o))}M�,k

i=1 are the parameters of birth targets at time k.
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