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We propose a spatially-varying Gaussian mixture model for joint spectral and spatial classification of 
hyperspectral images. The model provides a robust estimation framework for small sample size training 
sets. Defining prior distributions for the mean vector and the covariance matrix enables us to regularize 
the parameter estimation problem. More specifically, we can obtain invertible positive definite covariance 
matrices by the help of this regularization. Moreover, the proposed model also takes into account the 
spatial alignments of the pixels by using spatially-varying mixture proportions. The spatially-varying 
mixture model is based on spatial multinomial logistic regression. The classification results obtained 
on Indian Pines, Pavia Centre, Pavia University, and Salinas data sets show that the proposed methods 
perform better especially for small-sized training sets compared to the state-of-the-art classifiers.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

As one of the main topics of remote sensing research, hyper-
spectral images (HSIs) are used in many real-life applications in-
cluding forest vegetation mapping and classification, urban and 
land usage, determination of the water resources, and classifica-
tion of the crop species. The aim of this paper is supervised joint 
spectral and spatial classification of hyperspectral images. We pro-
pose a generative probabilistic model that is able to regularize the 
under-determined covariance matrix estimation problem for small 
sample size training data and provides a joint spectral and spatial 
classification framework as well.

Statistical mixture models are frequently used in classification 
problems [1]. Although GMM is a widely-used model, it is not 
much preferred in HSI classification since, in general, the length of 
the feature vectors, or spectral bands, is high, and the number of 
training samples is small. For an L-dimensional data vector, there 
are L +(L2 + L)/2 number of unknowns to be estimated for a single 
mixture component (L unknowns for mean vector and (L2 + L)/2
unknowns for covariance matrix). Since there is a smaller num-
ber of training samples compared to unknowns, the estimation 
problem becomes under-determined. To overcome the difficulty of 
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under-determined estimation problem, Tadjudin and Landgrebe [2]
propose a covariance matrix estimator called bLOOC that consists 
of a combination of three covariance estimators. In [3], the covari-
ance matrices are constrained to be in a particular structure to re-
duce the number of parameters to be estimated. In [4], regularized 
linear discriminant analysis (LDA) is used. A dimension reduction 
before GMM classification is proposed in [5]. A Bayesian mixture 
model is first introduced in our previous work [6]. This study is an 
improved and extended version of [6] with different priors for the 
means and covariance matrices. The Bayesian framework enables 
us to regularize an under-determined estimation problem by defin-
ing appropriate prior distributions for the parameters. For example, 
using a few number of samples to estimate the covariance matrix 
of a Gaussian may cause a non-invertible covariance matrix. Since 
normal-inverse-Wishart prior is a conjugate prior for the unknown 
mean and covariance matrix of a Gaussian random vector [7], we 
use normal-inverse-Wishart prior to regularize the covariance ma-
trix estimation problem. Without using a prior, direct maximum 
likelihood estimation of covariance matrix from hyperspectral data 
causes a non-invertible covariance matrix. By defining the prior 
distribution, we are able to obtain an invertible covariance matrix.

In this study, we focus on joint spectral and spatial classifica-
tion of HSIs rather than pixel-wise spectral classification. Spectral-
spatial classification is another challenge in HSI classification [8]. 
A general and intuitive approach for spectral-spatial classifica-
tion of hyperspectral images consists of classification and seg-
mentation as two successive, independent processes. K-means, k-
nearest neighbors (KNN), support vector machine (SVM), and linear 
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and quadratic discriminant analysis can be given as examples of 
mostly-used classification methods. In this kind of approaches, an 
image smoothing algorithm after the classification is needed in or-
der to have a smooth classification map. A widely used smoothing 
model for image segmentation is a discrete-valued Markov ran-
dom field called Potts model [9]. Potts model is already used in 
hyperspectral image segmentation in [10,11]. An SVM classifica-
tion followed by an MRF segmentation is proposed by Tarabalka 
et al. [12]. Since the output of an SVM classifier is not a probabil-
ity measure, in [12] the output of SVM is converted to probability 
measures as proposed in [13]. These probabilities are then used as 
likelihood in MRF segmentation. In generative probabilistic mod-
els, the likelihood term represents the spectral information, while 
the prior term models the spatial interaction of the pixels. Gamba 
and Trianni [14] and Plaza et al. [15] propose Markov random field 
(MRF) prior model for segmentation of HSI. They use a kind of 
Gaussian mixture models for likelihood. In this study, we propose 
a generative probabilistic model and supervised learning algorithm 
that performs contextual classification. For contextual classifica-
tion of hyperspectral images rather than using MRF, we propose a 
spatially-varying Gaussian mixture model. By spatially-varying, we 
mean that the mixture proportions of the Gaussian distributions 
are changed according to pixel locations.

Spatially-varying mixture models have already been used in 
optical, medical and synthetic aperture radar images for segmen-
tation and classification. For example, in [16–19] an MRF prior is 
used for mixture proportions to achieve a spatially-varying mixture 
model. In [20] and [21], a latent Gaussian random field is proposed 
such that the mixture proportions are connected to the class la-
bels by a Multinomial Logistic (MNL) function. In [22] and [23]
a spatial auto-logistic regression model is defined on class labels 
for synthetic aperture radar image classification. To the best of our 
knowledge, spatially-varying mixture models are first used for HSI 
classification problem in our previous short paper [6].

The paper has two main contributions listed as follows: 1) to
overcome the small sample size problem, a Bayesian Gaussian 
mixture model with normal-inverse-Wishart prior is used for HSI 
classification, and 2) spatially-varying mixture model allows joint 
spectral and spatial classification of HSIs. Organization of the pa-
per is as follows. Section 2 and 3 respectively present the proposed 
Bayesian models and the related classification algorithm. The ex-
perimental results are reported in Section 4. Section 5 summarizes 
the conclusion and future work.

2. Spatially-varying Gaussian mixture model

For an HSI with N pixels and L spectral bands, we denote each 
spectral vector by sn ∈ RL where n = 1, . . . , N is the lexicographi-
cally ordered pixel indices.

Assuming that there are K number of land cover classes in 
the HSI, we define a K -dimensional label vector zn ∈ {0, 1}K

for each pixel. The binary label vector zn has the property that ∑K
k=1 zn,k = 1 which means it indicates only one of the K classes 

by assigning its related element to 1. We can write zn ∈ Z =
{[1,0, . . . ,0], [0,1, . . . ,0], . . . , [0,0, . . . ,1]}.

For all pixels, the joint conditional density of sn ’s and zn ’s is 
written as

p(s1:N , z1:N |θ1:K , β) = p(s1:N |z1:N , θ1:K )p(z1:N |β) (1)

where θ1:K and β are the parameters of the densities. By assuming 
that sn vectors are conditionally independent given the labels, zn

vectors, the joint density in (1) can be simplified as

p(s1:N , z1:N |θ1:K , β) =
[

N∏
n=1

K∏
k=1

p(sn|θk)
zn,k

]
p(z1:N |β) (2)

where p(z1:N |β) is the prior density of the class labels. We assume 
that sn vectors are independent but the hidden labels, zn vectors, 
are spatially dependent. To introduce spatial information into (2), 
we need a dependent probabilistic model for z1:N rather than in-
dependent and identically distributed multinomial model.

The density in (2) defines a mixture model. In order to show 
the mixture model apparently, we need to write the probability 
density of a single pixel and its label conditioned on the rest of 
the pixels in the image

p(sn, zn|sn̄, zn̄, θ1:K , β) = p(sn|zn, θ1:K )p(zn|zn̄, β) (3)

where n̄ is the complement of n with respect to set {1, 2, . . . , N}, 
i.e. n̄ = {1, 2, . . . , N}\{n} and β is the smoothing parameter. Assum-
ing a Markov property that only the neighbor pixels are dependent, 
(3) can be written as

p(sn, zn|sn̄, zn̄, θ1:K , β) = p(sn|zn, θ1:K )p(zn|zñ, β) (4)

where of ñ is the set of pixels around the nth pixel. We may write 
the marginal density of sn using the joint density in (4) as follows:

p(sn|zñ, θ1:K , β) =
∑

zn

K∏
k=1

[p(sn|θk)ωn,k]zn,k

=
K∑

k=1

p(sn|θk)ωn,k (5)

where ωn,k is the spatially-varying mixture proportions and is re-
lated to label prior as follows:

ωn,k = p(zn,k = 1|zñ,k, β) (6)

From (5), the spatially-varying mixture model can be seen ap-
parently. In the following subsections, we give the details of the 
densities used in the proposed model.

2.1. Bayesian Gaussian mixture model

We assume that each class in the data is generated by a com-
ponent of a mixture of multivariate Gaussian distributions. This 
assumption tells us that a feature vector related to a pixel in the 
image is a sample from one of the K multivariate Gaussian distri-
butions. Therefore, the distribution of the kth class is a multivariate 
Gaussian given below

p(sn|mk,�k) = N
(
sn
∣∣mk,�k

)
(7)

where mk and �k are the mean vector and the covariance matrix 
of the kth class, respectively. For the kth class, the parameter set is 
defined to be θk = {mk, �k}. We define a normal-inverse-Wishart 
prior for mk and �k , i.e.

p(mk,�k) = N
(

mk

∣∣∣∣m0,
1

λ
�k

)
W−1 (�k|(τ + L + 1)�,τ ) (8)

where m0, � and τ are the parameters of the priors. The ex-
pressions of the probability density functions (pdfs) are given in 
Appendix A.

2.2. Spatially varying mixture proportions

Since we assume that the pixel labels are not independent, we 
should define the conditional density of a single pixel zn,k con-
ditioned on its neighbor pixels zñ,k . We use an auto-logistic re-
gression model for spatially dependent class labels. According to 
auto-logistic regression, the conditional probability of a class label 
can be given as follows [24]:

p(zn,k|zñ,k, β) ∝ eβ
(
zn,k+zn,k

∑
m∈ñ zm,k

)
(9)
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