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1. Introduction

Since the birth of data mining, its data preprocessing phase has
been recognized as crucial for the success of the overall process [7].
One of the main steps in data preprocessing is data reduction. In
domains lacking human expertise or knowledge, data reduction
becomes harder and requires automatic treatment by proper
techniques.

Feature selection is one of the common techniques used for
reducing data dimension. Feature selection is crucial for high-
lighting the relevant attributes to the learner. However, when data
is represented only in terms of primitive attributes and no prior
knowledge is provided about the concept, feature selection
becomes more difficult. Primitive data representation enables
the existence of attribute interactions, whose complexity may
become a severe hindrance to most feature selection algorithms
used in data mining. Interaction among attributes exists when the
relation between one attribute and the target concept is not
constant for all values of the other attributes [24,21,8]. When
attribute interactions exist, a feature selection method may fail to
improve learning since interacting attributes are easily con-

founded with irrelevant attributes [8,13]. Distinguishing interact-
ing attributes from irrelevant ones has recently received attention
[19,13,33]. However, when primitive attributes are provided for
representing data, even if a feature selection method successfully
detects all interacting attributes, still the underlying relations
among attributes and the target concept are opaque and difficult to
learn [3,29]. Thus, identifying relevant attributes by a feature
selection method is not sufficient for learning concepts with
primitive data representation.

Combination of feature selection and feature construction has
been used and proved to have an outstanding impact on data
mining results [17]. When feature construction (FC) is applied to
concepts with interactions, it aims to transform the primitive data
representation of data into a new one where interactions are
encapsulated into new features and highlighted to the learner. If FC
finds the appropriate features, such a change of representation
makes the target concept easy to learn. Many progresses have been
achieved by FC methods [31,34,35]; nevertheless, learners still face
serious difficulties to succeed when confronted with complex
attribute interactions [9,28].

This paper suggests a new form of applying MFE3/GA (multi-
feature extraction with a genetic algorithm) as a preprocessing FC
method to transform the data representation into a smaller and
more regular representation. MFE3/GA originally adds constructed
features to the given set of attributes and, therefore, increases the
data dimension. It assumes that the combination of new features
with original attributes can improve learning accuracy. Previous
empirical experiments demonstrated that MFE3/GA successfully
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A B S T R A C T

Real-world data are often prepared for purposes other than data mining and machine learning and,

therefore, are represented by primitive attributes. When data representation is primitive, preprocessing

data before looking for patterns becomes necessary. The low-level primitive representation of real-world

problems facilitates the existence of complex interactions among attributes. If lack of domain experts

prevents traditional methods to uncover patterns in data due to complex attribute interactions, then the

use of soft computing techniques such as genetic algorithms becomes necessary. This article introduces

MFE3/GADR , a data reduction method derived from the learning preprocessing system MFE3/GA. The

method restructures the primitive data representation by capturing and compacting hidden information

into new features in order to highlight regularities to the learner. We thoroughly analyze the empirical

results obtained on the poker hand data set. The results show that this approach successfully compacts

the set of low-level primitive attributes into a smaller set of highly informative features which outline

patterns to the learner; thus, the new approach provides data reduction and yields learning a smaller and

more accurate classifier.
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selects the interacting attributes and constructs highly informative
features defined as functions over selected attributes, therefore,
significantly improves predictive accuracy [27]. However, it was
observed that the standard learner applied to the set of original and
constructed features focussed mainly on the constructed features,
raising the question of whether the original features could be
removed from MFE3/GA’s output. Thus, in this work, the method is
modified to replace the original attributes with the new features.
The modified method, named MFE3/GADR, benefits from the
characteristics inherited from MFE3/GA to improve learning. The
use of genetic algorithm (GA) as a global search strategy helps this
method to deal with the problem of interactions better than other
FC methods. Moreover, GA facilitates the construction and
evaluation of several features simultaneously which is necessary
when several complex interactions exist among attributes. Also,
the use of non-algebraic (operator-free) representation for
expressing new features in MFE3/GADR contributes to reduce the
error rate on unseen data. Experiments reported in this article
show that the highly informative features constructed by the new
method reduce data dimension, increase learning accuracy, and are
easily interpretable. The constructed features successfully capture
and encapsulate relations among attributes when the only
available knowledge about the concept is primitive training data.

Section 2 reviews MFE3/GA and highlights the most important
aspects of the method. Section 3 explains how this method can be
used for data reduction by abstracting relations among attributes
into a set of highly informative features. The benefit of this form of
data reduction is shown empirically using the poker hand data set
(from UCI benchmarks [2]) whose results are thoroughly analyzed
as a case study in Section 4. This data set is represented by
primitive attributes and its underlying concept is difficult to
discover by current machine learning systems. Experiments show
that the preprocessing method, MFE3/GADR, successfully discovers
regularities in the concept and compacts them into few and easily
interpretable constructed features in order to improve learning.
Conclusions are summarized in Section 5.

2. MFE3/GA: encapsulating information

MFE3/GA is a preprocessing method that highlights the
interactions among attributes by constructing new features in
order to facilitate learning the target concept [27]. It receives as
input the training data samples and the original attribute set. Each
sample consists of a vector of attribute values and a binary class
label, stating whether or not the sample belongs to the target
concept (label ‘1’ for positive and label ‘0’ for negative). MFE3/GA
divides the task of constructing new features into two tasks. The
first task is search through the space of attribute subsets to find
subsets of interacting attributes. The second is to construct the
definition of one function for each subset of attributes generated in
the former task. The more promising constructed functions are
then added as new features to the original attribute set; after that
the new representation of data is given to a standard learner such
as C4.5 [23] to proceed with the data mining process. The current
version of MFE3/GA assumes that the class labels are binary and a
discretization preprocessing algorithm such as [16,4,14] has been
applied to transform all continuous attributes to nominal ones
before running the system.

The search space for finding relevant attributes and construct-
ing functions is large and with high variation when complex
interactions exist in the target concept. The importance of applying
a global search to such a space for constructing features has been
shown previously [6,18,30,32]. MFE3/GA uses GA, a global search
technique that has been shown promising in converging to an
optimal solution. The following sections explain important details
about GA in MFE3/GA.

2.1. Individual’s representation

As any other GA-based approach, MFE3/GA maintains a
population of individuals. Each individual represents a set of
attribute subsets such as Ind ¼ fS1; . . . ; Skg, where Si� S and S is the
set of N original attributes x1 to xN . Each individual has different
number of subsets; thus, the length of individuals is variable. If an
individual contains a subset Si, where Si ¼ S or jSij � 1, then Si does
not participate in feature construction and fitness measurement.
However, it is considered for GA operations to produce diversity in
the population. Each subset Si is represented by a bit-string of
length N, where each bit shows the presence or absence (in the
subset) of one of the N original attributes. Thus, an individual
representing k subsets is a bit-string of length k � N (k>0), such as
Ind ¼ hb11 � � � b1N � � � bk1 � � � bkNi. To avoid unnecessary growth of
individuals, the number of subsets in each individual is limited by a
parameter K defined by the user.

Each attribute subset in an individual is associated with a
function defined over the attributes in the subset and induced from
the data. Such functions are expressed by a non-algebraic
(operator-free) representation; that is, no algebraic operator is
used for representing functions. Non-algebraic representation has
been used successfully for expressing constructed functions by
other FC methods [21,29,20,35,1]. This form of representation
permits extracting part of the function’s description from data and
inducing the rest. The function f i for any given subset Si ¼
fxi1

; . . . ; ximg is defined by assigning binary labels (as outcomes of
the function) to all the tuples in the Cartesian product Vi1

� � � � �
Vim (as inputs of the function), where Vi p is the set of values of
attribute xi p . The label assigned to each tuple t j (that is, label ‘1’ for
positive and label ‘0’ for negative) depends on the class labels of the
training samples that match the tuple. A training sample matches a
tuple t j if its values for attributes in Si are equal to the
corresponding values in the j th combination of attribute values
in the Cartesian product. That is, a sample matches a tuple t j if for
all 1 � p � m, vi p ¼ t j p

, where vi p is the value of attribute xi p in the
sample and t j p

is the p th element in the tuple t j. To assign labels,
tuples are categorized into three groups, as follows. If there are no
training samples matching t j, this tuple is categorized as Unknown

tuple. If all training samples matching t j belong to the same class,
the tuple is a Pure tuple. If there is a mixture of classes in the
samples matching t j, it is a Mixed tuple. Then, a label is assigned to
each tuple t j according to its category, as discussed next:

Category 1: Unknown tuple: A label is assigned to f iðt jÞ stochas-
tically, according to the class distribution in the
training samples.

Category 2: Pure tuple: The label of training samples that match t j

is the label assigned to f iðt jÞ.
Category 3: Mixed tuple: The label assigned to f iðt jÞ depends on

the numbers of tuples labeled by Pure tuples as
positive (label ‘1’) and negative (label ‘0’), p2 and n2

respectively. If p2 >n2, the negative label, that is ‘0’, is
assigned; and otherwise, the positive label, that is ‘1’, is
assigned to f iðt jÞ (i.e., the opposite label of the
majority label in function).

Note that the label of mixed tuples depends on the definitive
labels in the function under construction, which are the labels of
pure tuples. The opposite label to the most frequent label among
pure tuples is selected.

The procedure for extracting the definition of f i from data
partitions the subspace defined by Si into four areas, as illustrated
in Fig. 1. Each f i identifies similar patterns of interaction among
attributes in Si and compresses them into the negative or positive
area (Category 2). The unseen area (Category 1) is covered by
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