### **Accepted Manuscript**

Finite-time adaptive control for a class of switched stochastic uncertain nonlinear systems

Zhibao Song, Junyong Zhai

PII: S0016-0032(17)30210-7

DOI: 10.1016/j.jfranklin.2017.04.021

Reference: FI 2974

To appear in: Journal of the Franklin Institute

Received date: 25 July 2016 Revised date: 1 March 2017 Accepted date: 29 April 2017



Please cite this article as: Zhibao Song, Junyong Zhai, Finite-time adaptive control for a class of switched stochastic uncertain nonlinear systems, *Journal of the Franklin Institute* (2017), doi: 10.1016/j.jfranklin.2017.04.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

#### ACCEPTED MANUSCRIPT

# Finite-time adaptive control for a class of switched stochastic uncertain nonlinear systems

Zhibao Song and Junyong Zhai\* Key Laboratory of Measurement and Control of CSE, Ministry of Education School of Automation, Southeast University, Nanjing, Jiangsu 210096, China

Abstract This paper addresses the problem of global finite-time adaptive control for a class of switched stochastic uncertain nonlinear systems under arbitrary switchings. By applying the delicate introduction of coordinate transformations and adding a power integrator technique, an adaptive controller is constructed to guarantee that the system state is regulated to the origin almost surely in a finite time while maintaining the boundedness of the resulting closed-loop systems in probability. Two examples are given to illustrate the effectiveness of the proposed control scheme. Key words: Finite-time stability; Switched stochastic nonlinear systems; Adding a power integrator; Adaptive control.

#### 1 Introduction

In this paper, we consider the problem of global finite-time adaptive control for a class of switched stochastic nonlinear systems

$$dx_{1} = x_{2}^{p_{1,\sigma(t)}} dt + f_{1,\sigma(t)}(\bar{x}_{1},\theta) dt + g_{1,\sigma(t)}^{T}(\bar{x}_{1},\theta) d\omega,$$

$$dx_{2} = x_{3}^{p_{2,\sigma(t)}} dt + f_{2,\sigma(t)}(\bar{x}_{2},\theta) dt + g_{2,\sigma(t)}^{T}(\bar{x}_{2},\theta) d\omega,$$

$$\vdots$$

$$dx_{n} = u^{p_{n,\sigma(t)}} dt + f_{n,\sigma(t)}(x,\theta) dt + g_{n,\sigma(t)}^{T}(x,\theta) d\omega$$
(1)

where  $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$  and  $u \in \mathbb{R}$  are the system state and control input respectively.  $\bar{x}_i = (x_1, \dots, x_i)^T$ ,  $i = 1, \dots, n$ .  $\sigma(t)$  is the switching signal taking its values in a finite set  $M = \{1, \dots, m\}$  and m is the number of subsystems.  $\omega$  is an r-dimensional standard Wiener process defined on the complete probability space  $(\Omega, \mathcal{F}, P)$  with  $\Omega$  being a sample space,  $\mathcal{F}$  being a  $\sigma$ -field and P being a probability measure.  $\theta \in \mathbb{R}^s$  is a vector of uncertain parameters with integer

<sup>\*</sup>Corresponding author: e-mail: jyzhai@seu.edu.cn

#### Download English Version:

## https://daneshyari.com/en/article/4974027

Download Persian Version:

https://daneshyari.com/article/4974027

<u>Daneshyari.com</u>