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Abstract

Two players of Rock-Paper-Scissors are modeled as adaptive agents which use a reinforcement learning algorithm and exhibit chaotic behavior

in terms of trajectories of probability in mixed strategies space. This paper demonstrates that an external super-agent can exploit the behavior of the

other players to predict favorable moments to play against one of the other players the symbol suggested by a sub-optimal strategy. This third agent

does not affect the learning process of the other two players, whose only goal is to beat each other. The choice of the best moment to play is based on

a threshold associated with the Local Lyapunov Exponent or the Entropy, each computed by using the time series of symbols played by one of the

other players. A method for automatically adapting such a threshold is presented and evaluated. The results show that these techniques can be used

effectively by a super-agent in a game involving adaptive agents that exhibit collective chaotic behavior.
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1. Introduction

Game theory [12] and the related concept of Nash

equilibrium [11] have produced important practical and

theoretical results using the idealization of a rational agent

[9] which seeks only to maximize its utility. Despite these

results, however, it is evident that a rational agent cannot be a

completely accurate model of a real agent [14,7]. As a

consequence we are observing an increasing interest in the

modeling of agent-irrationality: ‘‘Standard models in econom-

ics stress the role of intelligent agents which maximize utility.

However, there may be situations where, for some purposes,

constraints imposed by market institutions dominate intelligent

agent behavior’’ [6]. A possible alternative to rationality is

‘‘bounded-rationality’’, where the agent always takes the action

that is expected to optimize its performance measure, given

some informational and computational constraints [4]. Also, an

agent which makes decisions by using simple heuristics or rules

of thumb is considered a bounded-rational agent [8].

Real players of Rock-Paper-Scissors1 (RPS) always use

some impulse or inclination to choose a throw, and will

therefore settle into unconscious but nonetheless predicable

patterns [15]. We expect that such patterns are weaknesses in

their behavior.

Chaos in the probability space trajectory has been demon-

strated in recent studies of RPS [16,17], where the players change

the probability of playing each symbol by using reinforced

learning [20] based on coupled Ordinary Differential Equations

(ODE). Even with a more realistic adaptive agent which uses

reinforced learning based on micro-founded heuristics [8] there

is still chaos in the probability space trajectories [13]. We

conjecture that although local instability on attractors prohibits

accurate long-term predictions, short-term predictions can be

made with varying degrees of accuracy [10].

Given a time-series which represents the behavior of a

system, the usual aim is to predict its behavior in the future [22].

Here we are interested in showing that by means of the Local

Lyapunov Exponent (LLE) [1,2] it is possible for a super-agent

to predict the behavior of one player [5] of RPS in order to

ameliorate its own performance. We consider the game RPS

only as a metaphor of, for example, some real market where the

super-agent represents a speculator.

Our goal is not to suggest the optimal symbol to be played,

but to develop a theory of the best moment for playing the

symbol suggested by a sub-optimal strategy. We base our

analysis on the observable behavior of one of the players, and

show that it is possible for the super-agent to improve its
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performance by playing rounds intermittently on the basis of

indicators such as the LLE and the Entropy.

2. Framework

The RPS game is a two-person, zero-sum game whose

payoff matrix is presented in Table 1.

The RPS game has a Nash equilibrium in the mixed strategies

space. In the Nash equilibrium each player randomizes the pure

strategies with probability 1/3. At equilibrium no player has an

incentive to deviate from the Nash strategy.

We study a repeated version of RPS where the same players

play the same game iteratively. Unlike a single-shot game, a

repeated game allows players to use strategies contingent on

past moves by exploiting, if possible, any weakness in the

strategy of the other player. Learning and adaptation become

fundamental components of the players’ interaction.

Our agents use a reinforced learning algorithm to adapt their

behavior in response to changes in the behavior of the other

player. The reinforcement learning algorithm updates the

probability associated with each pure strategy on the basis of

the success of past strategies. If the player plays the strategy

si 2 {R, P, S}, then the complementary strategy for si, identified

by s̄i, is the strategy that wins against si. For example, if the agent

plays Rock, then the complementary strategy is Scissors. If a pure

strategy is successful, then the player increases the probability

associated with that strategy, and decreases the probability of

playing the complementary strategy. Vice-versa, if the strategy is

unsuccessful, the agent decreases the probability associated with

that strategy and increases the probability of the complementary

strategy. The agent updates the probability of playing strategy si,

Pt + 1(si) at time t + 1 in the following way:

PðsiÞtþ1 ¼ PðsiÞt þ wiðað1� PðsiÞtÞÞ (1)

where wi assume value 1 if the strategy outcome is positive, and

�1 if negative. The parameter a is called the learning rate, and

determines the agent’s adaptation velocity. We update the

probability associated with the complementary strategy in a

similar way:

Pðs̄iÞtþ1 ¼ Pðs̄iÞt þ ð1� wiÞað1� Pðs̄iÞtÞ (2)

We perform different experiments changing each agent’s

initial condition and learning rate parameter a. The projection of

an agent’s trajectory in the probability simplex for an experiment

with a = 0.1 and 20,000 repetitions is reported in Fig. 1.

The trajectory resembles a random set of points. However, if

we project the trajectory within some short intervals of time, as

shown in Fig. 2, we notice that the set of seemingly random

points in Fig. 1 has a precise internal structure, typical of

chaotic phenomena. These scattered orbits are frequently

present in trajectories generated by using sets of heuristics

employed to update the probability distribution of each player.

The orbits in Fig. 2 are not as smooth as those proposed in

[16,17] because the update of the probability is not controlled

by an equation, but follows heuristics which should capture the

behavior of a real player who, in a highly discrete way, can

change the probability used to play a symbol.

For instance a real player can decide to halve the probability

of playing Rock as a result of a sequence of losses, updating the

other probability to preserve:

PRock þ PPaper þ PScissors ¼ 1 (3)

Some of these heuristics capture the empirical observation

that a player increases its confidence in a symbol after a win,

and that the increase in confidence is somehow related with the

current probability distribution.
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Table 1

Payoff matrix of two-person Rock-Paper-Scissors

Player B Player A

R S P

R 0, 0 1,�1 �1, 1

S �1, 1 0, 0 1, �1

P 1, �1 �1, 1 0, 0

Fig. 1. Trajectory of 20,000 points in the probability simplex generated by two

agents learning with a = 0.1.

Fig. 2. Two portions of the trajectory of 20,000 points in the probability

simplex generated by two agents learning with a probability update of

a = 0.1 as presented in Fig. 1.
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