

Available online at www.sciencedirect.com

ScienceDirect

Journal of the Franklin Institute 352 (2015) 5437-5472

Journal of The Franklin Institute

www.elsevier.com/locate/jfranklin

Modeling and control of an agile tail-sitter aircraft

Xinhua Wang^{a,*}, Zengqiang Chen^b, Zhuzhi Yuan^b

^aDepartment of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia
^bDepartment of Automation, Nankai University, Tianjin 300071, China

Received 2 November 2014; received in revised form 22 July 2015; accepted 21 September 2015

Available online 21 October 2015

Abstract

This paper presents a model of an agile tail-sitter aircraft, which can operate as a helicopter as well as capable of transition to fixed-wing flight. Aerodynamics of the co-axial counter-rotating propellers with quad rotors are analyzed under the condition that the co-axial is operated at equal rotor torque (power). A finite-time convergent observer based on Lyapunov function is presented to estimate the unknown nonlinear terms in co-axial counter-rotating propellers, the uncertainties and external disturbances during mode transition. Furthermore, a simple controller based on the finite-time convergent observer and quaternion method is designed to implement mode transition.

© 2015 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

This paper focuses on the design and control of an agile tail-sitter aircraft, where such an aircraft can not only taking off and landing vertically, but also flying forward with high speed in the same way as a conventional fixed wing aircraft.

Vertical take-off and landing (VTOL) aircrafts and fixed-wing airplanes have their advantages and shortcomings. Traditional aircrafts can take off and land vertically, but they cannot fly forward with high speed carrying large payloads [1–4]. On the other hand, conventional fixed-wing airplanes can fly forward with high speed and can carry large payloads. However, they cannot take off and land vertically, and appropriate runways are required.

E-mail address: wangxinhua04@gmail.com (X. Wang).

^{*}Corresponding author.

Nomenclature

 F_c sum of the thrusts of the co-axial propellers

 F_{ri} , $i = 1, \dots, 4$ thrust of each quad rotor

 F_d forces due to uncertainties and external disturbances

 τ_{ri} , $i = 1, \dots, 4$ reactive torque generated in free air by the rotor due to rotor drag for quad rotors

 τ_{gyro} gyroscopic effects of the propellers

 τ_d moments due to the uncertainties and external disturbances

 f_{ai} , $i = 1, \dots, 4$ force generated by each blade of torque amplifier

 ω_i , $i = 1, \dots, 4$ rotational velocity of each quad rotor

 ω_u rotational velocity of upper rotor

 ω_l rotational velocity of lower rotor

m mass of aircraft

g acceleration of gravity

 l_1 distance between center of gravity of aircraft and force operating point of fixed wing

 l_2 distance between center of gravity of aircraft and plane center of quad rotors

*l*₃ distance between two quad rotor

 l_c distance between center of gravity of aircraft and fixed wing

 ϕ roll angle

 θ pitch angle

 ψ yaw angle

 α angle of attack

γ flightpath angle

 L_1 lift force generated by left fixed wing

 L_2 lift force generated by right fixed wingd

 L_f the lift force generated by the fuselage, respectively

 D_1 drag force generated by left fixed wing

D₂ drag force generated by right fixed wing

 D_f the drag force generated by the fuselage, respectively

S area of fixed wing

 C_{L0} lift coefficient when angle of attack α is equal to zero for fixed wing

 $C_{L\alpha}$ lift coefficient due to angle of attack α

 C_{lf} lift coefficient of fuselage

 C_{df} the drag coefficient of fuselage

 C_{df0} the constant in the coefficients of drag force of fuselage

 δ_i normal flap bias angle of fixed wing

 $C_{L\delta}$ lift coefficient due to flap bias angle δ_i

J inertial matrix of aircraft

 p_{Γ} position of center of gravity relative to right handed inertial frame

 v_{Γ} velocity vector of center of gravity relative to right handed inertial frame

 F_f body force of aircraft

R transformation matrix representing the orientation of the rotorcraft

 τ sum of the moments in the fixed-body frame

 Ω_{Λ} angular velocity of the airframe expressed in body frame

Download English Version:

https://daneshyari.com/en/article/4974475

Download Persian Version:

https://daneshyari.com/article/4974475

<u>Daneshyari.com</u>