## Author's Accepted Manuscript

Coordinated Formation Control Design with Obstacle Avoidance in Three-dimensional Space

Kai Chang, Yuanqing Xia, Kaoli Huang



www.elsevier.com/locate/ifranklin

PII: S0016-0032(15)00364-6

DOI: http://dx.doi.org/10.1016/j.jfranklin.2015.10.002

Reference: FI2451

To appear in: Journal of the Franklin Institute

Received date: 2 September 2014 Revised date: 18 May 2015 Accepted date: 5 October 2015

Cite this article as: Kai Chang, Yuanqing Xia and Kaoli Huang, Coordinated Formation Control Design with Obstacle Avoidance in Three-dimensional Space *Journal of the Franklin Institute* http://dx.doi.org/10.1016/j.jfranklin.2015.10.002

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

**ACCEPTED MANUSCRIPT** 

Coordinated Formation Control Design with

Obstacle Avoidance in Three-dimensional Space

Kai Chang, Yuanqing Xia, Kaoli Huang

#### **Abstract**

This paper considers a problem of coordination formation control for multiple unmanned vehicles based on the behavioral control and virtual structures in three-dimensional space. The repulsive forces effect among unmanned vehicles to avoid collision with others and move them to the balance points on the spherical surface whose center is the virtual leader. The unmanned vehicles do not have specific identities or roles within the formation. The proposed method does not require specific orders or positions of the unmanned vehicles. The formation can transform automatically when unmanned vehicles enter or exit the formation. This paper also proposes a technique for avoiding obstacles based on the behavioral structure. In this technique, when an unmanned vehicle gets close to an obstacle, while moving toward its target, two kinds of potential fields with rotational vectors are applied to lead the unmanned vehicle to avoid the obstacle. Simulations are also given to verify the effectiveness of theoretical results.

#### **Index Terms**

Virtual Structure, Cooperative control, Assignment, Collision avoidance.

#### I. INTRODUCTION

The formation control of unmanned vehicles such as unmanned aerial vehicles (UAVs), mobile robots and autonomous underwater vehicles (AUVs) has been the subject of extensive research in recent years. Among them, unmanned vehicles group can improve task allocation, performance, the time duration required, the system effectiveness and the safety to achieve the desired outcome

Kai Chang and Kaoli Huang are with the School of Automation, Mechanical Engineering College, Shijiazhuang 050003, China. Yuanqing Xia is with the School of Automation, Beijing Institute of Technology, Beijing 100081, China. Email: kerkaichance@gmail.com; xia\_yuanqing@bit.edu.cn; huangkaoli@163.com.

### Download English Version:

# https://daneshyari.com/en/article/4974491

Download Persian Version:

https://daneshyari.com/article/4974491

<u>Daneshyari.com</u>