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1. Introduction

Let A = [aij], 0 � aij � 1, be a m � n dimensional fuzzy matrix and
b = [b1,. . .,bn], 0 � bj � 1 be a n-dimensional vector, then the
following system of fuzzy relation equations (FRE) is defined by
A and b:

x�A ¼ b; (1)

where ‘‘�’’ denotes max-t composition of x and A, and t is an
Archimedean t-norm. In other words, we try to find a solution
vector x = [x1,. . .,xm], with 0 � xi � 1, 8i = 1,2,. . .,m, such that

m
i¼1 _ tðxi; ai jÞ ¼ b j; 8 j ¼ 1; . . . ;n: (2)

Resolution of fuzzy relation equations is an important on-going
topic of research. Fuzzy relation equation plays an important role
in fuzzy modeling, fuzzy diagnosis, fuzzy control and also
applications in fields such as psychology, medicine, economics,
and sociology [1,6,12,15,17]. The majority of fuzzy inference
systems can be implemented by using the fuzzy relation equations
[16]. Fuzzy relation equations can also be used for processes of
compression/decompression of images and videos [9]. According
to ref. [7], when the solution set of FRE (2) is non-empty, then it is,
in general, a non-convex set which can be completely determined
by a unique maximum solution and a finite number of minimal
solutions. The max–min composite fuzzy relation equation was

first studied by Sanchez [14] in 1976 and since then different types
of fuzzy relation equations have been studied by many researchers
[2–5,8,10,12–14,18].

2. The problem

We are interested in solving the following optimization
problem:

Min Z ¼
Xm
i¼1

cixi (3)

s:t: m
i¼1 _ tðxi; ai jÞ ¼ b j; 8 j ¼ 1; . . . ;n;

0 � xi � 1; 8 i ¼ 1; . . . ;m

where c = [c1,. . .,cm]T 2 Rm is a m-dimensional vector, ci represents
the weight (or cost) associated with variable xi, i = 1,. . .,m.
Compared to the regular programming problem, this linear
optimization problem subject to fuzzy relation equations has very
different nature. Because the solution set is non-convex, traditional
linear programming methods fail.

The optimization problem (3) was first considered by Fang and
Li [4] with max–min composition, Loetamonphong and Fang [8]
with max-product composition. For both compositions, this
optimization problem can be separated into two sub-problems
by separating the non-negative and negative coefficients in the
objective function. Both the sub-problems are subject to the same
fuzzy relation equations. The sub-problem formed by the negative
coefficients can be solved easily by the maximum solution. On the
other hand, the sub-problem formed by the non-negative
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coefficients can be converted into a 0–1 integer programming
problem. For the optimization problem with max–min composi-
tion, Fang and Li [4] solved the associated 0–1 integer program-
ming problem by the branch-and-bound method with backward
jumping-tracking technique. Wu et al. [18] improved Fang and Li’s
method by providing an upper bound for the branch-and-bound
procedure. Pandey and Srivastava [13] gave efficient procedure for
optimization of linear objective function subject to fuzzy relation
equations and solved the associated 0–1 integer programming
problem by the branch-and-bound method with forward jump-
ing–tracking technique. Loetamonphong and Fang [8] solved the
corresponding 0–1 integer programming problem by reducing its
size and by employing the branch-and-bound method.

3. Characterization of feasible domain and the covering
problem

Let XðA; bÞ ¼ fx ¼ ½x1; x2; . . . ; xm� 2Rm : x�A ¼ b; xi 2 ½0;1�g be the
solution set of (1). Define I = {1,2,. . .,m}, J = {1,2,. . .,n} as the index
sets and X = {x 2 Rm:xi 2 [0,1], 8i 2 I}. For x1, x2 2 X we say x1 � x2 if
and only if xi

1 � xi
2; 8 i2 I: Therefore ‘‘�’’ forms a partial ordering

relation on X and (X, �) becomes a lattice. x
_2XðA; bÞ is the

maximum solution, if x � x
_
; 8 x2XðA; bÞ: Similarly, x

^
2XðA; bÞ is

a minimal solution, if x � x
^

implies x ¼ x
^
; 8 x2XðA; bÞ: According

to ref. [7], when X(A,b) 6¼ f it can be completely determined by
unique maximum solution and finite minimal solutions. The
maximum solution can be obtained by

x
_¼ A�tb ¼ ^

n

j¼1
ðai j�tb jÞ

� �
i2 I

(4)

where aij �t bj = sup{xi 2 [0,1]:t(xi,aij) � bj}.
If X

^

ðA; bÞ is the set of all minimal solutions, then

XðA; bÞ ¼
[

x
^
2X
^

ðA;bÞ

fx2X : x
^
� x � x

_g:

Markovskii [11] gave the concept of covering problem for fuzzy
relation equations with max-product composition. In the present
paper, maximum solution is obtained by the concept of covering
problem and the concept of covering is applied to establish 0–1
integer programming problem equivalent to the linear program-
ming problem. A binary coded genetic algorithm is applied to find
the optimal solution of the problem (3). The algorithm directly
searches for an optimal solution of the problem. Now, we take a
close look at the covering problem for fuzzy relation equations
with max-t composition.

Definition 1. Let ej denotes the jth equation of the system (2) and
let r = [r1,. . .,ri,. . .,rm] be a solution to system (2). Then for each
equation ej there exists value ri of some variable xi such that
t(ri,aij) = bj. This value ri is said to be a realizing value for equation
ej and we say that ej is realized by ri in r. For a realizing value ri, the
equality ri = aij �t bj holds. For aij � bj, t(aij �t bj,aij) = bj.

Definition 2. A variable xi is said to be essential if aij � bj for some
j 2 J. Define Ej = {i 2 I: aij � bj}, 8j 2 J. Essential variable xi corre-
sponds to i 2 Ej. An essential variable xi may have different values
for different equations ej. Clearly, ri is the value of essential variable
xi, i 2 Ej. A variable xi is non-essential if aij < bj, 8j 2 J. In other
words, a variable xi is non-essential if i =2 Ej.

So, the equations of the system (2) can be satisfied only by essential
variables. Presence of essential variables is necessary condition for
the compatibility of the system (2). It may happen that for i 2 Ej, xi

is an essential variable, but value of xi is not equal to ri. Thus, a
system having essential variables, can be both, compatible and

non-compatible. And if system has no essential variables, then it is
non-compatible.

Definition 3. Let x
_

i ¼ ^ j2 J ðai j�tb jÞ: Then define x
_

i as the base
value of xi. We say that x

_
i belongs to an equation ej if x

_
i ¼ ai j�tb j is

achieved on ej. The base value x
_

i can belong to several equations
and an equation can possess base values of several variables.

Lemma 1. The base value x
_

i is the maximum value of essential

variable xi in the solutions of a system (2).

Proof. Let [r1,. . .,ri,. . .,rm] be a solution to system (2). Suppose that
x
_

i is not the maximum value, i.e., 9ri s.t. ri > x
_

i: Let x
_

i belong to
equation ej. Since t is monotonic, tðri; ai jÞ> tðx_ i; ai jÞ ¼
tðai j�tb j; ai jÞ ¼ b j for aij � bj, i.e., t(ri,aij) > bj. So ri violates equa-
tion ej, a contradiction. &

Corollary. The maximum value of an essential variable is equal to its

base value and for non-essential variable this value is 1.

Lemma 2. If an essential variable xi has a realizing value ri in some

equation ej, then ri ¼ x
_

i and x
_

i belongs to ej.

Proof. If ri realizes some equation ej, then ri ¼ ai j�tb j� x
_

i: But
ri� x

_
i is impossible by Lemma 1, therefore ri ¼ ai j�tb j ¼ x

_
i: &

The concept of covering can be understood by the help of
Table 1.

Table 1 shows the covering table T. A row sj of Table 1
corresponds to equation ej and column si corresponds to variable xi.
si

j is an element located on the intersection of row sj and column si.
We say that value of si

j equals one iff xi is an essential variable and
the base value x

_
i belongs to equation ej. A column si covers a row sj

iff si
j ¼ 1: In other words, we say that variable xi and x

_
i covers

equation ej. A set of non-zero columns C forms a covering of a set of
rows, if every row of the set is covered by at least one column from
set C.

Theorem 1. A system of FRE (2) is compatible iff there exists a

covering C for all rows of the table T.

Proof. Let us consider that system of FRE (2) is compatible. Then
we will show that there exists a covering C for all rows of the table
T. For any row sj of the covering table T, the equation ej has some
realizing value ri of some variable xi, hence, by Lemma 2, ri ¼ x

_
i,

and x
_

i belongs to equation ej. Therefore, by definition of covering,
si

j ¼ 1 and row sj corresponding to equation ej is covered with the
column si.

Conversely, if there exists a covering C for all rows of the table T,
then all the variables which belong to C are equal to their base
values, and rest of the variables are equal to zero. Thus, in the
solution of the system of FRE (2) every equation ej is realized by any
base value x

_
i, covering ej. &

Definition 4. A column si of the table T corresponding to the
variable xi is redundant in a covering C if after deleting si from
covering C, remainder of C is still a covering. A covering C is said to
be irredundant if it has no redundant columns. We denote an

Table 1
Covering table T.

S1 . . . Si . . . Sm

S1

. . .

Sj Si
j

. . .

Sn
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