
Author's Accepted Manuscript

Bipartite coordination problems on networks of multiple mobile agents

Deyuan Meng, Yingmin Jia, Junping Du

www.elsevier.com/locate/jfranklin

PII: S0016-0032(15)00302-6

DOI: http://dx.doi.org/10.1016/j.jfranklin.2015.07.009

Reference: FI2399

To appear in: Journal of the Franklin Institute

Received date: 4 December 2014

Revised date: 2 June 2015 Accepted date: 11 July 2015

Cite this article as: Deyuan Meng, Yingmin Jia, Junping Du, Bipartite coordination problems on networks of multiple mobile agents, *Journal of the Franklin Institute*, http://dx.doi.org/10.1016/j.jfranklin.2015.07.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Bipartite Coordination Problems on Networks of Multiple Mobile Agents

Deyuan Meng, Yingmin Jia, and Junping Du

Abstract

Learning via iterative or repeated implementation is an intelligent method which takes full advantage of experience data from previous iterations or repetitions in the control signals computation to improve the current system performance. In this paper, we incorporate the idea of iterative learning to deal with bipartite coordination problems for multiple mobile agents in networked environments that are described by signed directed graphs. We aim at high-precision bipartite coordination tasks for networked mobile agents subject to a time-varying reference whose information is only available to a portion of agents. To achieve this objective, we construct iterative learning algorithms for agents using the nearest neighbor rule and address the related asymptotic stability and monotonic convergence issues for them. We establish convergence conditions and the guarantees to their feasibility. In particular, we develop a class of linear matrix inequality conditions, as well as providing formulas for the design of gain matrices. We perform simulations to illustrate the effectiveness of the proposed algorithms in enabling mobile agents to achieve high-precision bipartite coordination on networks associated with signed directed graphs.

Index Terms

Iterative learning; Bipartite coordination; Mobile agents; Networked environments; Convergence.

I. Introduction

Networks of multiple mobile agents as well as their distributed control have attracted considerable research interests due to their wide applications in many fields, such as spacecrafts,

Deyuan Meng and Yingmin Jia are with the Seventh Research Division, Beihang University (BUAA), Beijing 100191, China. They are also with the School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing 100191, China (e-mail: dymeng23@126.com, ymjia@buaa.edu.cn).

Junping Du is with the Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, School of Computer Science and Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China (e-mail: junpingdu@126.com).

1

Download English Version:

https://daneshyari.com/en/article/4974681

Download Persian Version:

https://daneshyari.com/article/4974681

<u>Daneshyari.com</u>