Author's Accepted Manuscript

Decentralized risk-sensitive design for large-scale stochastic interconnected systems with time-varying delays

Shuangshuang Xiong, Quanxin Zhu

www.elsevier.com/locate/ifranklin

PII: S0016-0032(16)00041-7

DOI: http://dx.doi.org/10.1016/j.jfranklin.2015.12.012

Reference: FI2524

To appear in: Journal of the Franklin Institute

Received date: 12 October 2014 Revised date: 9 October 2015 Accepted date: 27 December 2015

Cite this article as: Shuangshuang Xiong and Quanxin Zhu, Decentralized risk sensitive design for large-scale stochastic interconnected systems with time varying delays, *Journal of the Franklin Institute* http://dx.doi.org/10.1016/j.jfranklin.2015.12.012

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Decentralized risk-sensitive design for large-scale stochastic interconnected systems with time-varying delays*

Shuangshuang Xiong^{1,2}, Quanxin Zhu^{1,3} †

School of Mathematical Sciences and Institute of Finance and Statistics,
Nanjing Normal University, Nanjing, 210023, Jiangsu, China

²Advanced Control Systems Laboratory,
School of Electronics and Information Engineering,
Beijing Jiaotong University, Beijing, 100044, China

³Department of Mathematics,
University of Bielefeld, Bielefeld D-33615, Germany

Abstract

In this paper, the problem of risk-sensitivity for a class of large-scale interconnected stochastic nonlinear systems with unbounded time-varying delays is investigated. The design procedure is dedicated to designing a decentralized controller by using only local measurements in each subsystems, and the designed controller can guarantee any desired achievable level of long-term average cost for a given risk-sensitivity parameter μ . Under some suitable conditions, we prove the globally asymptotic stability in probability by applying the design procedure. Finally, two examples are presented to illustrate our results.

Key Words: Risk-sensitive control; unbounded time-varying delay; stochastic nonlinear system; large-scale interconnected system; globally asymptotic stability.

^{*}This work was jointly supported by the Alexander von Humboldt Foundation of Germany (Fellowship CHN/1163390), the National Natural Science Foundation of China (61374080, 61573112), the Priority Academic Program Development of Jiangsu Higher Education Institutions.

[†]The correspondent author's e-mail: zqx22@126.com.

Download English Version:

https://daneshyari.com/en/article/4974902

Download Persian Version:

https://daneshyari.com/article/4974902

<u>Daneshyari.com</u>