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Abstract

Boundary control to stabilize a system of coupled linear plant and reaction-diffusion process is
considered. Backstepping transformations with a kernel function and a vector-valued function are
introduced to design control laws. For the situation without heat resource, the kernel function and the
vector-valued function of the transformation are obtained, and an explicit control law is established, and
simulation results are presented through figures. For the general situation with heat resource, the existence
of the kernel and the vector-valued function of the transformations is shown, and an control law is derived.
Stability of the closed loops is achieved for both the situations.
& 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Control designs of engineering control problems are considered in this paper. In engineering
applications, there is the situation that a plant is stabilized by heat. Because of corrosion, high
temperature, etc., a controller cannot be directly set on or into the plant, alternatively, an thermal
conductivity body is employed to transfer heat and control the plant. The controller is set on the
thermal conductivity body, and the plant is indirectly controlled through the thermal conductivity
body. Another engineering situation is that the plant is controlled by the heat generated by a
chemical reaction or biological fermentation. A compensator (controller) is set on the body of
heat source to stabilize the plant.

For both situations, control configuration can be illustrated by Fig. 1. The length of the heat
body is assumed to be 1, the control input U(t) is set at the “outside” end of the connecting body,
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namely x¼1, and the plant is connected to the heat body at x¼0. Let the plant is modeled by
_X ðtÞ ¼ AXðtÞ, the control configuration illustrated by Fig. 1 is modeled by the following control
system:

_X ðtÞ ¼ AXðtÞ þ Buð0; tÞ ð1Þ

utðx; tÞ ¼ uxxðx; tÞ þ λuðx; tÞ; 0oxo1 ð2Þ

uxð0; tÞ ¼ αðuð0; tÞ�CTXðtÞÞ ð3Þ

uð1; tÞ ¼UðtÞ ð4Þ
where XðtÞ ¼ ðX1ðtÞ;X2ðtÞ;…;XnðtÞÞTARn is the signal of the plant, and the pair (A,B) is
assumed to be stabilizable (AARn�n and BARn), signal uðx; tÞAR is the temperature of the
thermal body, and the constant λ is non-negative, the Neumann boundary condition (3) comes
from the Fourier's Law of Heat Conduction, and αis the Fourier constant, which depends on
materials of the plant and the heat conductivity body, CTARn is a vector such that CTXðtÞ is the
temperature of the plant, and U(t) denotes the control input.
If the constant λ¼ 0, the system models the first engineering control problem. If the constant

λ40, the system models the second engineering control problem. The control objective is to
exponentially stabilize entire system signal ðXðtÞ; uðx; tÞÞ of the closed loop in some sense.
System (2)–(4) is a coupled ordinary differential equation (ODE) and partial differential

(PDE). Although there are rich references about the controllability of coupled ODE–PDE
systems (see, e.g., Lasiecka [7]), applicable control designs about the coupled ODE–PDE
systems have not been established. Recently, Krstic and Smyshlyaev [5,6] developed a
backstepping design for boundary control designs of PDEs. Further, Susto and Krstic [4]
established a control design for cascaded ODE–PDE systems through the backstepping.
Motivated by the design procedures by Krstic and Smyshlyaev [5,6], Tang and Xie [1–3]
initiated the control designs of coupled ODE–PDE systems, and established control laws for
special class of coupled ODE–PDE systems. In [1,2], the physical configuration is similar to
Fig. 1. However, the control system models the first engineering control problem, that is, λ¼ 0,
besides, there is no temperature difference at x¼0, thus the boundary condition is the Dirichlet
one, uð0; tÞ ¼CTXðtÞ. So, the control system (2)–(4) models another class of control problems in
engineering. It is valuable to establish its control laws.
The control designs to be established in this paper are as follows. By the backstepping design

procedure involved in Susto and Krstic [4] and Tang and Xie [1,2], backstepping transformations
which involve kernel functions and vector-valued functions are employed to convert the system
into a chosen exponentially stable target systems. Control laws and stabilization are established
via the backstepping transformations and its inverses. For the situation that λ¼ 0, an analytical
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Fig. 1. Control configuration.
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