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Abstract

This paper studies the global stabilization problem for a class of high-order nonlinear systems with low-
order and high-order nonlinearities, and multiple time-varying delays. Systems become more general due to
both low-order and high-order in nonlinearities taking values in certain intervals. By introducing a novel
Lyapunov–Krasovskii functional, a state feedback controller based on the Lyapunov–Krasviskii theorem
together with the adding a power integrator and sign function methods is designed to guarantee the globally
uniformly asymptotic stability of the closed-loop system.
& 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider a class of high-order nonlinear systems with multiple time-varying
delays described by

_xiðtÞ ¼ xpiiþ1ðtÞ þ f iðt; xðtÞ; x1ðt�τ1ðtÞÞ;…; xnðt�τnðtÞÞÞ; i¼ 1;…; n�1;
_xnðtÞ ¼ upn ðtÞ þ f nðt; xðtÞ; x1ðt�τ1ðtÞÞ;…; xnðt�τnðtÞÞÞ; ð1Þ

where xðtÞ ¼ ½x1ðtÞ;…; xnðtÞ�> ARn and uðtÞAR are the system state and control input,
respectively. For i¼ 1;…; n, τiðtÞ : Rþ-Rþ is the time-varying delay with 0oτiðtÞrεi, where
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εi is a positive constant, piARZ1
odd 9fp=qARþ: p and q are odd integers, pZqg, f i :

Rþ � Rn � Rn-R is an unknown continuous function with f iðt; 0; 0Þ ¼ 0. The initial condition is
xðθÞ ¼ ξ0ðθÞ; 8θA ½�τ; 0� with τZmaxfε1;…; εng and ξ0ð�Þ being a specified continuous
function. System (1) is called as high-order system if there exists at least one pi41 (1r irnÞ.
The satisfactory solution to the stabilization problem of system (1) plays a guiding role in some
physical systems, such as the underactuated unstable mechanical system in [1], chemical reactor
systems with delayed recycle streams in [2,3].
In particular, for high-order nonlinear system (1) without time-delay, i.e.,

_xiðtÞ ¼ xpiiþ1ðtÞ þ f iðt; xðtÞÞ; i¼ 1;…; n�1;
_xnðtÞ ¼ upn ðtÞ þ f nðt; xðtÞÞ; ð2Þ

many results on feedback stabilization of nonlinear system (2) have been achieved in the past
decades, see [4–8] and the references therein. Most of the existing results require that the
nonlinearity fi satisfies a certain restrictive condition, i.e., the states in the bounding function are
of an order equal to 1=ðpj⋯pi�1Þ, or greater than 1=ðpj⋯pi�1Þ, or less than 1=ðpj⋯pi�1Þ, e.g.,
see [9–18] and the references therein.
Recently, the restrictive condition is relaxed by [19–22], in which all the states in the bounding

condition are allowed to be of both an order greater than 1=ðpj⋯pi�1Þ and an order equal to
1=ðpj⋯pi�1Þ. These assumptions can be summarized in the following form:

jf iðt; xðtÞÞjrM ∑
i

j ¼ 1
ðjxjðtÞjνlj þ jxjðtÞjνujÞ; i¼ 1;…; n; ð3Þ

where low-order νlj ¼ 1=ðpj⋯pi�1Þ and high-order νuj ¼ ðgi þ ω2Þ=gj are some ratios of odd
integers in ½1=ðpj⋯pi�1Þ;þ1Þ with g1 ¼ 1, giþ1 ¼ ðgi þ ω2Þ=pi and ω2Z0.
For the special case of pi ¼ 1, [23,24] weaken growth condition (3) by allowing both low-

order 0oνljr1 and high-order 1rνujoþ1, i.e.,

f i t; x tð Þð Þ
�� ��rM ∑

i

j ¼ 1
jxjðtÞjð1þiω1Þ=ð1þðj�1Þω1Þ þ jxjðtÞjð1þiω2Þ=ð1þðj�1Þω2Þ
� �

;

� 1
n
oω1r0; ω2Z0:

However, for the general case of piZ1, no further result on the stabilization of nonlinear system
(2) is achieved to relax the condition (3) until now.
For high-order nonlinear system (1) with time-delay, several results [25–27] have been

achieved on feedback stabilization. But their growth conditions on fi only have high-order terms.
From the above discussion, a very interesting problem is proposed immediately:
For high-order time-delay nonlinear system (1), under the condition

jf iðt; xðtÞ; x1ðt�τ1ðtÞÞ;…; xnðt�τnðtÞÞÞj
rM ∑

i

j ¼ 1
ðjxjðtÞjνlj þ jxjðtÞjνuj þ jxjðt�τjðtÞÞjνlj þ jxjðt�τjðtÞÞjνuj Þ; i¼ 1;…; n; ð4Þ

is it possible to relax condition (4) by allowing low-order νlj and high-order νuj to take any value
in ð0; 1=ðpj⋯pi�1Þ� and ½1=ðpj⋯pi�1Þ;þ1Þ, respectively? Under the weaker condition, can a
stabilized state feedback controller be designed for system (1)?
In this paper, by introducing a novel Lyapunov–Krasovskii (L–K) functional together with a

combined sign function design and the adding a power integrator, we solve the above problem.
The main difficulties in the design and analysis are:
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