
Astronomy and Computing 14 (2016) 1–7

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Real-time dedispersion for fast radio transient surveys, using auto
tuning on many-core accelerators
A. Sclocco a,b,∗, J. van Leeuwen b,c, H.E. Bal a, R.V. van Nieuwpoort d
a Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
b ASTRON, The Netherlands Institute for Radio Astronomy, Dwingeloo, The Netherlands
c Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, The Netherlands
d NLeSC, Netherlands eScience Center, Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 2 November 2015
Accepted 1 January 2016
Available online 11 January 2016

Keywords:
Pulsars: general
Astronomical instrumentation, methods
and techniques

Techniques: miscellaneous

a b s t r a c t

Dedispersion, the removal of deleterious smearing of impulsive signals by the interstellar matter, is one
of themost intensive processing steps in any radio survey for pulsars and fast transients. We here present
a study of the parallelization of this algorithm on many-core accelerators, including GPUs from AMD and
NVIDIA, and the Intel Xeon Phi. We find that dedispersion is inherently memory-bound. Even in a perfect
scenario, hardware limitations keep the arithmetic intensity low, thus limiting performance. We next
exploit auto-tuning to adapt dedispersion to different accelerators, observations, and even telescopes.
We demonstrate that the optimal settings differ between observational setups, and that auto-tuning
significantly improves performance. This impacts time-domain surveys from Apertif to SKA.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Astronomical phenomena such as pulsars (Hewish et al.,
1968) and fast radio bursts (FRBs; Lorimer et al., 2007) con-
sist of millisecond-duration impulsive signals over a broad radio-
frequency range. As the electromagnetic waves propagate through
the interstellar material (ISM) between us and the source, they are
dispersed (Lorimer and Kramer, 2005). This causes lower radio fre-
quencies to arrive progressively later, and without correction this
results in a loss of signal-to-noise, that often makes the source
undetectable when integrating over a wide observing bandwidth.
This frequency-dependent delay canbe removed in aprocess called
dedispersion. Complete removal can be achieved by reverting all
phases through a convolution of the signal with the inverse of the
modeled ISM (coherent dedispersion; Hankins and Rickett, 1975).
Incomplete but much faster removal, especially when many dis-
persion measure trials are required, can be achieved by appropri-
ately shifting in time the signal frequency channels (incoherent
dedispersion; from now on referred to plainly as dedispersion).

∗ Corresponding author at: ASTRON, The Netherlands Institute for Radio
Astronomy, Dwingeloo, The Netherlands.

E-mail addresses: a.sclocco@vu.nl (A. Sclocco), leeuwen@astron.nl
(J. van Leeuwen), h.e.bal@vu.nl (H.E. Bal), r.vannieuwpoort@esciencecenter.nl
(R.V. van Nieuwpoort).

This dedispersion is a basic algorithm in high-time-resolution ra-
dio astronomy, and one of the building blocks of surveys for fast
phenomena with modern radio telescopes such as the Low Fre-
quency Array (LOFAR; van Leeuwen and Stappers, 2010; Stappers
et al., 2011) and the Square Kilometer Array (SKA; Carilli and Rawl-
ings, 2004). In these surveys, the dispersion measures are a pri-
ori unknown, and can only be determined in a brute-force search.
This search generally runs on off-site supercomputers. These range
from e.g., the CM-200 in the Foster et al. (1995) Arecibo survey,
to gSTAR for the Parkes HTRU (Keith et al., 2010), and Cartesius
for the LOFAR LOTAAS (Coenen et al., 2014) surveys. In the latter
the dedispersion step amounts to over half of all required pulsar-
search processing. For the SKA, this processing will amount to
many PFLOPS for both SKA-Mid (cf. Magro, 2014) and SKA-Low
(Keane et al., 2014).

Above and beyond these pure compute requirements, the sim-
ilar and often simultaneous search for FRBs demands that this
dedispersion is done near real time. Only then can these fleeting
events be immediately followed up by telescopes at other ener-
gies (Petroff et al., 2015).

We aim to achieve the required performance by parallelizing
this algorithm for many-core accelerators. Compared to similar
attempts made by Barsdell et al. (2012) and Armour et al. (2012),
we present a performance analysis that is more complete, and
introduce a novel many-core algorithm that can be tuned for
different platforms and observational setups. To our knowledge,

http://dx.doi.org/10.1016/j.ascom.2016.01.001
2213-1337/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ascom.2016.01.001
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2016.01.001&domain=pdf
mailto:a.sclocco@vu.nl
mailto:leeuwen@astron.nl
mailto:h.e.bal@vu.nl
mailto:r.vannieuwpoort@esciencecenter.nl
http://dx.doi.org/10.1016/j.ascom.2016.01.001


2 A. Sclocco et al. / Astronomy and Computing 14 (2016) 1–7

this is the first attempt at designing a brute-force dedispersion
algorithm that is highly portable and not fine-tuned for a specific
platform or telescope.

To summarize our contributions, in this paper we: (1) provide
an in-depth analysis of the arithmetic intensity (AI) of brute-
force dedispersion, finding analytically and empirically that it is
memory bound; (2) show that auto-tuning can adapt the algorithm
to different platforms, telescopes, and observational setups; (3)
demonstrate that many-core accelerators can achieve real-time
performance; (4) quantify the impact that auto-tuning has on
performance; (5) compare different platforms using a real-world
scientific application; and (6) compare the performance of OpenCL
and OpenMP for the Intel Xeon devices.

In Section 2 we describe the brute-force dedispersion algo-
rithm, our parallel implementation and its optimizations; and the
theoretical analysis of the dedispersion AI. We next present our
experiments (Section 3), results (Section 4) and further discussion
(Section 5). Finally, relevant literature is discussed in Section 6, and
Section 7 summarizes our conclusions.

2. The brute-force dedispersion algorithm

In dispersion (Lorimer and Kramer, 2005), the highest fre-
quency in a certain band fh is received at time tx, while lower si-
multaneously emitted frequency components fi arrive at tx +k. For
frequencies expressed in MHz this delay in seconds is:

k ≈ 4150 × DM ×


1
f 2i

−
1
f 2h


. (1)

Here the Dispersion Measure DM represents the projected num-
ber of free electrons between the source and the receiver. In inco-
herent dedispersion, the lower frequencies are shifted in time and
realigned with the higher ones, thus approximating the original
signal.

In a survey, the incoming signal must be brute-force dedis-
persed for thousands of possible DM values. As every telescope
pointing direction or beam can be processed independently, per-
formance of the dedispersion algorithm can be improved bymeans
of large-scale parallelization.

2.1. Sequential algorithm

The input of this algorithm is a frequency-channelized time
series, represented as a c × t matrix, with c frequency channels
and t time samples needed to dedisperse one second of data. The
output is a set of d dedispersed trial-DM time-series, each of length
s samples per second, represented as a d × s matrix. All data are
single precision floating point numbers; their real-life rates are
e.g. 36 GB/s input and 72 GB/s output for the pulsar search with
Apertif on the Westerbork telescope (van Leeuwen, 2014).

Dedispersion (sequential pseudocode shown in Algorithm 1)
then consists of three nested loops, and every output element is
the sum of c samples: one for each frequency channel. Which sam-
ples are part of each sumdepends on the applied delay (i.e.∆) that,
as we know from Eq. (1), is a non-linear function of frequency and
DM. These delays can be computed in advance, so they do not con-
tribute to the algorithm’s complexity. Therefore, the complexity of
this algorithm is O(d × s × c).

In the context of many-core accelerators, there is another,
extremely important algorithmic characteristic: the Arithmetic
Intensity (AI), i.e. the ratio between the performed floating-point
operations and the number of bytes accessed in global memory.
In many-core architectures the gap between computational
capabilities and memory bandwidth is wide, and a high AI is
thus a prerequisite for high performance (Williams et al., 2009).

Algorithm 1 Pseudocode of the brute-force dedispersion algo-
rithm.

for dm = 0 → d do
for sample = 0 → s do

dSample = 0
for chan = 0 → c do

dSample += input[chan][sample + ∆(chan, dm)]
end for
output[dm][sample] = dSample

end for
end for

Unfortunately, the AI for Algorithm 1 is inherently low, with only
one floating point operation per four bytes loaded from global
memory. For dedispersion,

AI =
1

4 + ϵ
<

1
4

(2)

where ϵ represents the effect of accessing the delay table andwrit-
ing the output. This low AI shows that brute-force dedispersion is
memory bound onmost architectures. Its performance is thus lim-
ited not by computational capabilities, but by memory bandwidth.
One way to increase AI and thus improve performance, is to re-
duce the number of reads from global memory, by implementing
some form of data reuse. In Algorithm 1 some data reuse appears
possible. For some frequencies, the delay is the same for two close
DMs, dmi and dmj, so that ∆(c, dmi) = ∆(c, dmj). Then, one input
element provides two different sums. With data reuse,

AI <
d × s × c

4 × ((s × c) + (d × s) + (d × c))
=

1
4 ×

 1
d +

1
s +

1
c

 . (3)

The bound from Eq. (3) theoretically goes toward infinity, but in
practice the non-linear delay function diverges rapidly at lower
frequencies. There is never enough data reuse to approach the up-
per bound of Eq. (3); for a more in-depth discussion see Sclocco
et al. (2014). We thus categorize the algorithm as memory-bound.
In this conclusion we differ from previous literature such as
Barsdell et al. (2010) and Barsdell et al. (2012). The importance
of the above mentioned data reuse in dedispersion was identi-
fied early on and implemented in e.g. the tree dedispersion algo-
rithm (Taylor, 1974). That fast implementation has the drawback
of assuming the dispersion sweep is linear. Several modern pul-
sar and FRB surveys with large fractional bandwidths have used
modified tree algorithms that sum over the quadratic nature of the
sweep (e.g. Manchester et al., 2001; Masui et al., 2015).

2.2. Parallelization

We first determine how to divide and organize the work
of different threads, and describe these in OpenCL terminology.
We identify three main algorithm dimensions: DM, time and
frequency. Time andDMare independent, and ideal for paralleliza-
tion, avoiding any inter- and intra-thread dependency. In our im-
plementation, each OpenCL work-item (i.e. thread) is associated
with a different (DM, time) pair and it executes the innermost loop
of Algorithm 1. An OpenCLwork-group (i.e. group of threads) com-
bines work-items that are associated with the same DM, but with
different time samples.

This proposed organization also simplifies memory access, us-
ing coalesced reads andwrites. Different small requests can thenbe
combined in one bigger operation. This well-known optimization
is a performance requisite for many-core architectures, especially
for memory-bound algorithms like dedispersion. Our output ele-
ments are written to adjacent, and aligned, memory locations. The
reads from global memory are also coalesced but, due to the shape
of the delay function, are not always aligned. Theworst-casemem-
ory overhead is at most a factor two (Sclocco et al., 2014).



Download English Version:

https://daneshyari.com/en/article/497515

Download Persian Version:

https://daneshyari.com/article/497515

Daneshyari.com

https://daneshyari.com/en/article/497515
https://daneshyari.com/article/497515
https://daneshyari.com

