
Author's Accepted Manuscript

A hybrid approximation scheme for discretizing constrained quadratic optimal control problems

H.R. Marzban, S.M. Hoseini

www.elsevier.com/locate/jfranklin

PII: S0016-0032(14)00002-7

DOI: http://dx.doi.org/10.1016/j.jfranklin.2013.12.024

Reference: FI1960

To appear in: Journal of the Franklin Institute

Received date: 16 October 2012 Revised date: 22 December 2013 Accepted date: 31 December 2013

Cite this article as: H.R. Marzban, S.M. Hoseini, A hybrid approximation scheme for discretizing constrained quadratic optimal control problems, *Journal of the Franklin Institute*, http://dx.doi.org/10.1016/j.jfranklin.2013.12.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A hybrid approximation scheme for discretizing constrained quadratic optimal control problems

H.R. Marzban* and S.M. Hoseini

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran.

Abstract

In this paper, a composite Chebyshev finite difference method for solving linear quadratic optimal control problems with inequality constraints on state and control variables is introduced. This method is an extension of Chebyshev finite difference scheme and is based on a hybrid of block-pulse functions and Chebyshev polynomials using the well known Chebyshev-Gauss-Lobatto nodes. The excellent properties of hybrid functions are used to convert optimal control problem into a mathematical programming problem whose solution is much more easier than the original one. Various types of optimal control problems are investigated to demonstrate the effectiveness of the proposed approximation scheme. The method is simple, easy to implement and provides very accurate results.

AMS Subject Classifications: 49J15; 65K15; 34K28; 93C10.

KEY WORDS: optimal control; inequality constraints; hybrid functions; Chebyshev-Gauss-Lobatto nodes; composite Chebyshev finite difference.

1. Introduction

Numerical methods for solving linear and nonlinear optimal control problems are typically described under two categories: direct methods and indirect methods [1-4]. Historically, many early numerical methods were based on finding solutions to satisfy a set of necessary optimality conditions resulting from Pontryagin's Maximum Principle [4-7]. These methods are collectively called indirect methods. There are many successful implementations of indirect methods

^{*}Corresponding author: Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran. E-mail address: hmarzban@cc.iut.ac.ir (H.R. Marzban)

Download English Version:

https://daneshyari.com/en/article/4975286

Download Persian Version:

https://daneshyari.com/article/4975286

<u>Daneshyari.com</u>