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Abstract

Sparsity regularized least squares are very popular for the solution of the underdetermined linear inverse
problem. One of the recent progress is that structural information is incorporated to the sparse signal
recovery for compressed sensing. Sparse group signal model, which is also called block-sparse signal, is one
example in this way. In this paper, the internal structure of each group is further defined to get the globally
sparse and locally dense group signal model. It assumes that most of the entries in the active groups are
nonzero. To estimate this newly defined signal, minimization of the ‘1 norm of the total variation is
incorporated to the group Lasso which is the combination of a sparsity constraint and a data fitting
constraint. The newly proposed optimization model is called globally sparse and locally dense group Lasso.
The added total variation based constraint can encourage local dense distribution in each group. Theoretical
analysis is performed to give a class of theoretical sufficient conditions to guarantee successful recovery.
Simulations demonstrate the proposed method's performance gains against Lasso and group Lasso.
& 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Compressive sensing (CS) is a new signal processing technique that can reconstruct the signal
with a much fewer randomized samples than Nyquist sampling with high probability on condition
that the signal has a sparse representation. Least-absolute shrinkage and selection operator (Lasso)
is one of the popular convex ways to exploiting sparsity to recover the sparse signal [1]. It has wide
applications in signal processing [2], machine learning [1], etc. Recent research on sparse signal
recovery for CS shows that adding structural constraint can improve the estimate performance [3].

www.elsevier.com/locate/jfranklin

0016-0032/$32.00 & 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jfranklin.2014.01.009

E-mail address: yipeng.liu@esat.kuleuven.be

www.elsevier.com/locate/jfranklin
dx.doi.org/<?tbklnk=
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfranklin.2014.01.009&domain=pdf
www.elsevier.com/locate/jfranklin
dx.doi.org/<?tbklnk=
dx.doi.org/<?tbklnk=
dx.doi.org/<?tbklnk=


Group Lasso (GLasso) is a popular example of model based sparse signal recovery ways
[4–6], which extends the popular Lasso method [1,2]. Besides sparsity, it takes another physical
property of signal. Group-sparsity is called block-sparsity too [7–9]. In group-sparse signal
model, most of the nonzero entries are accumulated in groups. This means that a few groups can
represent the signal. The GLasso replaces the ‘1 norm regularization with a sum of ‘2 norm
regularization which has the effect of grouping all the variables within each group and the
recovery entries are encouraged to be zero or nonzero simultaneously. A series of literatures has
addressed certain statistical properties of the GLasso. In [6,10,11], some asymptotic properties
like risk consistency and estimation consistency are provided. Some sufficient conditions for
successful recovery are given in [7,8,12]. To allow overlapping of different groups, overlapping
Group Lasso is proposed and corresponding algorithms are developed [13,14]. Weighted Group
Lasso was proposed to enhance the sparsity [15–18]. Combining the ‘1 norm regularization for
standard sparse constraint and the sum of ‘2 norm regularization for group constraint, the
Hi-Lasso was proposed to further enforce sparse distribution in each group [19–24]. There are a
lot of papers on Group Lasso, we just name parts of them here.
In this paper, internal structural information of active groups is used to set a globally sparse

and locally dense group signal model, and it is different from the signal model for the HiLasso.
In the proposed signal model, the estimated signal is globally sparse and locally dense. This kind
of signal model can be applied to many areas, such as wireless communication [18], array signal
processing [17] regression [5] and bioinformatics [13]. A corresponding novel convex recovery
model called globally sparse and locally dense (SDGLasso) is developed with a new constraint
added for the signal recovery. This newly added constraint, in the form of total variation
minimization, encourages dense distribution in each group. Similar to the Lasso [25,26], the
GLasso [8] and the HiLasso [21], coherence evaluation for the proposed SDGLasso is performed
to get a group of sufficient conditions for the successful recovery of globally sparse and locally
dense group signal. Numerical experiments show the performance improvement.
In the rest of this paper, the globally sparse and locally dense group signal model is formulated

in Section 2. And in Section 3, a corresponding recovery model called SDGLasso is proposed.
Section 4 gives a class of sufficient conditions for the SDGLasso and its deduction. In Section 5,
simulations are performed to demonstrate the performance improvement of the proposed method.
Finally, Section 6 draws the conclusion.

2. Signal model

Considering an N-by-1 signal x can be expanded in an N-by-N orthogonal complete dictionary
Ψ, with the representation as

x¼Ψθ ð1Þ
When most elements of the N-by-1 vector θ are zeros or trivially small, the signal x is sparse.
When the number of nonzero entries of θ is S ðS5NÞ, the signal is said to be S-sparse.
The signal model (1) is the standard sparse one. In many applications, practical signals enjoy

some other common structural information. One example is the sparse group signal model [7]

θT ¼ θ1⋯θd|fflfflffl{zfflfflffl}
θT1

θdþ1⋯θ2d|fflfflfflfflfflffl{zfflfflfflfflfflffl}
θT2

⋯ θðK�1Þdþ1⋯θN|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
θTK
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