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a b s t r a c t

We construct a ‘‘hyperparameter matrix’’ statistical method for performing the joint analyses of multiple
correlated astronomical data sets, in which the weights of data sets are determined by their own
statistical properties. This method is a generalization of the hyperparameter method constructed by
Lahav et al. (2000) and Hobson et al. (2002) which was designed to combine independent data sets. The
advantage of ourmethod is to treat correlations betweenmultiple data sets and gives appropriate relevant
weights of multiple data sets with mutual correlations. We define a new ‘‘element-wise’’ product, which
greatly simplifies the likelihood functionwith hyperparametermatrix.We rigorously prove the simplified
formula of the joint likelihood and show that it recovers the original hyperparameter method in the limit
of no covariance between data sets. We then illustrate the method by applying it to a demonstrative toy
model of fitting a straight line to two sets of data. We show that the hyperparameter matrix method can
detect unaccounted systematic errors or underestimated errors in the data sets. Additionally, the ratio of
Bayes’ factors provides a distinct indicator of the necessity of including hyperparameters. Our example
shows that the likelihood we construct for joint analyses of correlated data sets can be widely applied to
many astrophysical systems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Due to the fast development of astronomical observations
such as the measurements of the cosmic microwave background
temperature anisotropy (e.g. WMAP Hinshaw et al., 2013 and
Planck Ade et al., 2013b satellites) and observations of galaxy
clustering (e.g. 6dFMagoulas et al., 2012 and SDSS Nuza et al., 2013
galaxy surveys), more and more large-scale data sets are available
for studying a variety of astrophysical systems. It is, therefore, a
common practice in astronomy to combine different data sets to
obtain the joint likelihood for astrophysical parameters of interest.
The standard approach for this joint analysis assumes that the
data sets are independent, therefore the joint likelihood is simply
the product of the likelihood of each data set. The joint likelihood
function can then be used to determine optimal parameter values
and their associated uncertainties. In the frequentist approach to
parameter estimation, this is equivalent to the weighted sum of
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the parameter constraints from the individual data sets, where the
weight of each data set is the inverse variance. Data sets with small
errors provide stronger constraints on the parameters.

There is a long history discussing the appropriate way to
combine observations from different experiments. In the context
of cosmology, the discussion can be traced back to Godwin and
Lynden-Bell (1987) and Press (1996), where weight parameters
were assigned to different data sets to obtain joint constraints on
the velocity field and Hubble parameter H0. In these approaches,
however, the assignment of weights to data sets with differing
systematic errors was, in some ways, ad-hoc. For instance, if a
data set has large systematic error and is not reliable, it is always
assigned a weight of zero and is effectively excluded from the joint
analysis. On the other hand, a more trustworthy data set can be
assigned a higher relative weighting.

Due to the subjectivity and limitations of this traditional way
of assigning weights to different data sets, Lahav et al. (2000)
and Hobson et al. (2002, hereafter HBL02) developed the orig-
inal hyperparameter method. This allows the statistical proper-
ties of the data themselves to determine the relative weights of
each data set. In the framework developed by Lahav et al. (2000)
and HBL02, a set of hyperparameters is introduced to weight each
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independent data set, and the posterior distribution of the model
parameters is recovered by marginalization over the hyperparam-
eters. The marginalization can be carried out with a brute-force
grid evaluation of the hyperparameters, or it can be explored
by using Monte Carlo methods which directly sample the poste-
rior distribution. Such possibilities include Markov chain Monte
Carlo (MCMC) algorithms such as Metropolis–Hastings and Simu-
lated Annealing, or non-MCMC methods such as Nested Sampling
(Skilling, 2004). The application of hyperparameters was consid-
ered for a variety of cases by HBL02. For instance, if the error of a
data set is underestimated, the direct combination of data sets (no
hyperparameter) results in an underestimated error-budget, pro-
viding unwarranted confidence in the observation and producing a
fake detection of the signal. The hyperparametermethod, however,
was shown to detect such a phenomenon and act to broaden the
error-budget, thus recovering the true variance of the data sets. By
using the hyperparameter method, the results of joint constraints
become more robust and reliable. This approach has also been ap-
plied to the joint analysis of the primordial tensormode in the cos-
mic microwave background radiation (CMB) (Ma et al., 2010), the
distance indicator calibration (Erdogdu et al., 2003), the study of
mass profile in galaxy clusters (Host and Hansen, 2011), and the
cosmic peculiar velocity field study (Ma et al., 2012).

Notably, the hyperparametermethod established by Lahav et al.
(2000) and HBL02 is limited to independent data sets, where ‘‘no
correlation between data sets’’ is assumed in the joint analysis. In
the analysis of cosmology and many other astrophysical systems,
the data sets sometimes are correlated. For instance, in the study of
the angular power spectrum of the CMB temperature fluctuations,
the data from the Atacama Cosmology Telescope (ACT), South Pole
Telescope (SPT) and Planck satellite share a large range of multi-
pole moments ℓ (see Fig. 1 of Cheng et al., 2013 and Fig. 11 of Ade
et al., 2013a). When combining these observations, one needs to
consider the correlated cosmic variance term since these data are
drawn from a close region of the sky. In addition, in the study of
the cosmic velocity field (Ma and Scott, 2013), the bulk flows from
different peculiar velocity surveys are drawn from the same un-
derlyingmatter distribution so, in principle, a non-zero correlation
term exists between different peculiar velocity samples. Therefore,
a method both using hyperparameter method and taking into ac-
count the correlation between different data sets is needed in the
study of astrophysics. Providing such a method is the main aim of
this paper.

For a clear presentation, we build up our method step-by-step
from the most basic level, explaining the concepts and derivation
process in a pedagogical way. The structure of the paper is as fol-
lows. In Section 2, we review Bayes’ theorem (Section 2.1) and the
standardmultivariate Gaussian distribution (Section 2.2) in the ab-
sence of any hyperparameters. Section 2.3 provides a review of the
hyperparameter method as proposed in HBL02. In Section 2.4 we
present the hyperparameter matrix method, which is the core of
the new method proposed in this paper. We quote the appropri-
ate likelihood function for the hyperparameter matrix method for
correlated data in Section 2.4, leaving its derivation and proofs of
its salient features in Appendix A. The proof of the functional form
for the joint likelihood of correlated data sets makes use of sev-
eral recondite matrix operations and lemmas. These are laid out
in Appendices B and C, while the main text simply quotes their re-
sults. In Section 3, we apply our method to a straight-line model
while fitting two independent data sets. We vary the error-budget
and systematic errors in each data set to test the behaviour of the
hyperparameter matrix method. In Section 3.4, we also discuss
the improvement of our hyperparameter matrix method over the

Table 1
Jeffreys’ empirical criterion for strength of evidence (Jeffreys, 1961).

K value Strength of evidence

<1 Negative (supporting H0)
1–3 Weak
3–10 Substantial
10–30 Strong
30–100 Very Strong

>100 Decisive

original method proposed by HBL02. The conclusion and discus-
sion are presented in the last section.

2. Statistical method

2.1. Bayes theorem

Let us suppose that our data set is represented by D and the
parameters of interest are represented by vector θ⃗ . Then by Bayes’
theorem, the posterior distribution Pr(θ⃗ |D) is given by

Pr(θ⃗ |D) =
Pr(D|θ⃗ )Pr(θ⃗)

Pr(D)
, (1)

where Pr(D|θ⃗ ) is called the likelihood function,1 Pr(θ⃗) is the prior
distribution of parameters and Pr(D) is the Bayesian evidence, an
important quantity for model selection.

Given a data set D, let us suppose we have two alternative
models (or hypotheses) for D, namely H0 and H1. One can calculate
the Bayesian evidence for each hypothesis H ∈ {H0, H1} as

Pr(D|H) =


Pr(D|θ⃗ )Pr(θ⃗) dθ⃗ , (2)

where the integral is performed over the entire parameter space θ⃗
of each model H . Note that the models may have different sets of
parameters. The evidence is an important quantity in the Bayesian
approach to parameter fitting, and it plays a central role in model
selection (Jeffreys, 1961; Kass and Raftery, 1995). Specifically, if
we have no prior preference between models H1 and H0, the ratio
between two Bayesian evidences gives a model selection criterion,
or Bayes’ factor

K =
Pr(H1|D)

Pr(H0|D)
=

Pr(D|H1)

Pr(D|H0)
. (3)

The value of K indicates whether the model H1 is favoured
over model H0 by data D. Jeffreys (1961) gave an empirical scale
for interpreting the value of K , as listed in Table 1. We will use
this table as a criterion to assess the improvement of statistical
significance when using the hyperparameter matrix method.

2.2. Multivariate Gaussian distribution

Let us now consider the combination ofmultiple data sets, com-
ing from a collection of different surveys S. Each survey provides ni
number of measurements (Di) of the quantity we are trying to fit,
whose expectation value by our hypothesis is µi. For each survey
Si we form the data vector x⃗Si with the following elements:

xSij ≡ Dj − µj, j ∈ {1, . . . , ni}. (4)

The data vector is the difference between the observed value and
the expected value, characterizing the error in the measurement.
As such, it is also referred to as the error vector. We combine the

1 Sometimes it is written as L(θ⃗), but here we stick to the notation Pr(D|θ⃗ ).
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