
Astronomy and Computing 16 (2016) 1–16

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

A polyphase filter for many-core architectures
K. Adámek a, J. Novotný a, W. Armour b,∗
a Institute of Physics, Silesian University in Opava, Faculty of Philosophy and Science, Bezručovo nám. 13, 746 01 Opava, Czech Republic
b Oxford e-Research Centre, University of Oxford, 7 Keble Road, Oxford OX1 3QG, United Kingdom

a r t i c l e i n f o

Article history:
Received 4 January 2016
Accepted 22 March 2016
Available online 30 March 2016

Keywords:
Graphics processors
Parallel architectures
Parallel programming languages
Parallel computing models
Parallel algorithms

a b s t r a c t

In this article we discuss our implementation of a polyphase filter for real-time data processing in radio
astronomy. The polyphase filter is a standard tool in digital signal processing and as such awell established
algorithm. We describe in detail our implementation of the polyphase filter algorithm and its behaviour
on three generations of NVIDIA GPU cards (Fermi, Kepler, Maxwell), on the Intel Xeon CPU and Xeon
Phi (Knights Corner) platforms. All of our implementations aim to exploit the potential for data reuse
that the algorithm offers. Our GPU implementations explore two different methods for achieving this,
the first makes use of L1/Texture cache, the second uses shared memory. We discuss the usability of
each of our implementations along with their behaviours. We measure performance in execution time,
which is a critical factor for real-time systems, we also present results in terms of bandwidth (GB/s),
compute (GFLOP/s/s) and type conversions (GTc/s). We include a presentation of our results in terms
of the sample rate which can be processed in real-time by a chosen platform, which more intuitively
describes the expected performance in a signal processing setting. Our findings show that, for the GPUs
considered, the performance of our polyphase filter when using lower precision input data is limited by
type conversions rather than device bandwidth. We compare these results to an implementation on the
Xeon Phi. We show that our Xeon Phi implementation has a performance that is 1.5× to 1.92× greater
than our CPU implementation, however is not insufficient to compete with the performance of GPUs. We
conclude with a comparison of our best performing code to two other implementations of the polyphase
filter, showing that our implementation is faster in nearly all cases. This work forms part of the Astro-
Accelerate project, a many-core accelerated real-time data processing library for digital signal processing
of time-domain radio astronomy data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The technique of time-domain filtering is a rich and far reaching
area in the field of signal processing. One of the cornerstones of
time-domain data processing is the use of linear filters. Linear
filtering of time-domain signals is a technique employed in many
different scientific and industrial settings, from everyday tasks
such as audio and video processing to the filtering of radio signals
in the field of radio astronomy, it is this latter use of such filters
that motivates our work.

This article focuses on the implementation of a polyphase
filter on many-core technologies.1 We use the problem posed

∗ Corresponding author.
E-mail addresses: karel.adamek@fpf.slu.cz (K. Adámek), jan.novotny@fpf.slu.cz

(J. Novotný), wes.armour@oerc.ox.ac.uk (W. Armour).
1 https://github.com/wesarmour/astro-accelerate/tree/master/lib/

AstroAccelerate/PPF.

by real-time signal processing of time-domain radio astronomy
data as our application domain, however this work is in no way
limited to this field alone. Typical signal processing pipelines
in radio astronomy, Sclocco et al. (2014) and Chennamangalam
et al. (2015) use several processing steps to extract a meaningful
signal from input data. This is significant when employing many-
core accelerators to achieve real-time processing because (in
many cases) it allows data to reside on the accelerator card,
circumventing the need for multiple host to device data transfers
via the relatively slow PCIe bus. As such our codes can be used in
two different ways. The first is as a stand-alone implementation
of the polyphase filter, the second is a module that can be
incorporated into an existing signal processing pipeline.Whilst our
focus has been to produce implementations that run in real-time,
the codes can also be used to process archived data.

Processing time-domain radio astronomy data in real-time
enables events, such as Fast Radio Bursts, to be detected and
observed as they occur. This allows scientists to create data
rich observations by carrying out follow-up measurements whilst

http://dx.doi.org/10.1016/j.ascom.2016.03.003
2213-1337/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ascom.2016.03.003
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2016.03.003&domain=pdf
mailto:karel.adamek@fpf.slu.cz
mailto:jan.novotny@fpf.slu.cz
mailto:wes.armour@oerc.ox.ac.uk
https://github.com/wesarmour/astro-accelerate/tree/master/lib/AstroAccelerate/PPF
https://github.com/wesarmour/astro-accelerate/tree/master/lib/AstroAccelerate/PPF
https://github.com/wesarmour/astro-accelerate/tree/master/lib/AstroAccelerate/PPF
https://github.com/wesarmour/astro-accelerate/tree/master/lib/AstroAccelerate/PPF
https://github.com/wesarmour/astro-accelerate/tree/master/lib/AstroAccelerate/PPF
https://github.com/wesarmour/astro-accelerate/tree/master/lib/AstroAccelerate/PPF
https://github.com/wesarmour/astro-accelerate/tree/master/lib/AstroAccelerate/PPF
https://github.com/wesarmour/astro-accelerate/tree/master/lib/AstroAccelerate/PPF
https://github.com/wesarmour/astro-accelerate/tree/master/lib/AstroAccelerate/PPF
https://github.com/wesarmour/astro-accelerate/tree/master/lib/AstroAccelerate/PPF
http://dx.doi.org/10.1016/j.ascom.2016.03.003

2 K. Adámek et al. / Astronomy and Computing 16 (2016) 1–16

Fig. 1. Depicts the structure of an input data stream, the FIR filter operation and
DFT. The input data stream (top), is divided into spectra each containing C samples
(spectra are differentiated by colour). Each sample (a single square) x[n] ∈ C
belongs to a specific channel. In this example the spectra have 8 channels. The
response function b of the FIR filtermust be of sizeCT (bottomshadedby a gradient).
The operation of the FIR filter is shown (middle). The FIR filter takes T number of raw
spectra (coloured groups of squares), in this case T = 3, and produces one filtered
spectra y[n]. The next filtered spectra y[n + C] reuses T − 1 raw spectra from the
previous filtered spectra. The DFT acts on filtered spectra y[n] to produce frequency
spectra Y [n] (middle, right). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

an event is occurring. This is a vital part of our effort to
understand very rare events (Karastergiou et al., 2015). However
processing such vast data streams produced by modern radio
telescopes can be an extremely demanding computational task.
Data undergoes many different processes and transformations,
such as de-dispersion (Armour et al., 2011; Clarke et al., 2014),
before a signal from a distant celestial object can be discerned.
This is why it is vitally important to ensure that all processes in
a data processing pipeline operate as quickly and efficiently as
possible, hence the use of many core acceleration Serylak et al.
(2012), Magro et al. (2013) and Sclocco et al. (2014).

In this article we present various implementations of the
polyphase filter (PPF).We discuss their application and limitations.
We compare the performance of these on several different hard-
ware architectures, three generations of NVIDIA GPUs (scientific
and gaming), on CPUs and also the Intel Xeon Phi. We compare
our results to two previous works on many-core platforms, the
polyphase filter created for the VEGAS spectrometer (Chennaman-
galam et al., 2014), and the polyphase filter for the LOFAR radio
telescope (van der Veldt et al., 2012).

Our work is structured as such: In Section 2 we discuss the
polyphase filter and its features, in Section 3 we describe how we
have implemented the polyphase filter on our chosen platforms,
in Section 4 we discuss the behaviour of GPU implementations in
detail and present our Xeon Phi implementation. Section 5 deals
with performance comparison with other published work and
sample rates per second are presented, we also briefly summarise
our experience with different GPU generations. Lastly Section 6
summarises our work.

2. Polyphase filter bank

Before we describe the polyphase filter (PPF) algorithm, we
shall address the structure of data on which we apply the
polyphase filter. We assume input data to be a stream of complex
samples x[n] ∈ C in the time domain, these are divided into S
groups, each containing C samples, we call these groups spectra.
We refer to the position of samples within a spectra as channels.
The structure of the input data together with FIR filter is depicted
in Fig. 1.

The polyphase filter consists of two steps. The first step is
to apply a linear filter, which combines T previous time domain
spectra, we refer to them as raw spectra, into one filtered spectra.

Fig. 2. Values of the coefficients of the response function b[n] used in examples
with 1024 channels per spectra. Coefficients are generated by a sinc(x) function
and multiplied by a Hanning window. On the x-axis we have the position within
coefficients 0 ≤ n < CT , where CT is the total number of coefficients. The division
of the coefficients into taps (in this case T = 8) is depicted by vertical dashed lines.

In the case of the polyphase filter the linear filter combines samples
within a single channel of raw spectra and it is described by a finite
impulse response (FIR) filter. The second step is to apply a discrete
Fourier transformation (DFT) applied on a single filtered spectra
which produces a single frequency spectra. These two steps are
outlined as follows:

raw spectra
FIR
−→ filtered spectra,

filtered spectra
DFT
−→ frequency spectra.

The FIR filter is mathematically given (Lyons, 2011) by

y[n] =

T
t=1

x[n − C(T − t)]b[CT − C(t − 1)], (1)

where 0 ≤ n < C , square brackets [] indicate that a physical
quantity is discrete (sampled), x[n] represents samples from the
input data belonging to the raw spectra and the quantity y[n]
represents samples in the filtered spectra. Quantities y[n] and
x[n] are assumed to be complex. The FIR filter is a convolution of
samples x[n]within a single channelwith coefficients of a response
function b. The number of past samples which the FIR filter
operates on is called taps, denoted by T . The choice of a response
function b depends on the desired features of the polyphase filter.
The data access pattern for the FIR filter is depicted in Fig. 1.

We have used a sinc(x) function to generate the coefficients
used in this article, however these are easily replaceable in our
code. The sinc(x) function in the time-domain transforms into a
pair of a rectangular windows in the frequency domain. To obtain
more accurate results we have multiplied the sinc(x) function by
a Hanning window (Lyons, 2011). The resulting coefficients can be
seen in Fig. 2.

The discrete Fourier transformation (DFT), which forms the
second step of the polyphase filter, is given (Lyons, 2011) by

Y [m] =

C−1
n=0

y[n] exp
−i2πnm

C
, (2)

where Y [m] represents data in frequency domain and C represents
the number of channels.

The polyphase filter reduces errors introduced by a discrete
Fourier transformation, these are DFT leakage and DFT scalloping
loss, depicted in Figs. 3 and 4. The polyphase filter can also serve
for sample rate conversions and as a bandpass filter. Figs. 3 and 4

Download English Version:

https://daneshyari.com/en/article/497534

Download Persian Version:

https://daneshyari.com/article/497534

Daneshyari.com

https://daneshyari.com/en/article/497534
https://daneshyari.com/article/497534
https://daneshyari.com

