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Abstract

In this paper strict, non-smooth Lyapunov functions for some non-homogeneous versions of the super-
twisting algorithm are proposed. Convergence under the action of bounded perturbations for two basic
forms of non-homogeneous algorithms will be studied by means of the Lyapunov functions. Since the
homogeneity property cannot be used directly to prove stability of the algorithms, the availability of a
Lyapunov function is of great importance for analysis and design in these cases. Moreover, exponential or
finite-time and local or global stability are required to be established, since they are not derived from the
homogeneity.
& 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The super-twisting algorithm (STA), proposed in [15,11], can be described by

_x1 ¼ �k1jx1jp signðx1Þ þ x2; 0opr1

_x2 ¼ �k2 signðx1Þ þ δðtÞ; ð1Þ
where xi, i¼1, 2, are the scalar state variables, ki are positive gains and δðtÞ is a perturbation
signal. The solutions of Eq. (1) are all trajectories in the sense of Filippov [9,23], which
correspond to solutions of a Differential Inclusion obtained from Eq. (1) replacing the
discontinuous function signðx1Þ by a multivalued function taking at x1¼0 any values in the
segment ½�1; 1� (the perturbation δðtÞ can also be included in this process). It has been shown in
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[15,11], by geometric methods, that, for 0opr1
2 this algorithm has a second order sliding mode,

ensuring finite time convergence and enduring bounded Lipschitz perturbations. This algorithm
is homogeneous (as a Differential Inclusion) [16] only when p¼ 1

2, having degree ρ¼ �1 and
weights ðr1; r2Þ ¼ ð2; 1Þ. This property can be used to study the finite-time, global convergence
and robustness properties [16,17].

In the homogeneous case p¼ 1
2 this algorithm has been widely used to substitute

discontinuous controllers by continuous ones (see [2,24,12] for example), its properties have
been studied in the frequency domain by [5,14], and it has been shown to be a robust exact
differentiator [16,17] or observer [7,3,10], providing finite time convergence for the observers,
even in the presence of bounded unknown inputs. In [25,18,19,21,22] strong Lyapunov functions
for the homogeneous STA are proposed, allowing the use of Lyapunov-based design techniques
for STA and to estimate the convergence time. Probably due to the success of the homogeneity
theory to establish the convergence and robustness properties of the algorithm, the non-
homogeneous case pa1

2 has received considerably less attention in the last years. Since the
different values of p offer a rich family of algorithms, it is of interest to study their convergence
and robustness properties. In particular, it is important to provide Lyapunov functions to study
the qualitative behavior of the algorithms. Beyond the intrinsic mathematical interest of studying
non-homogeneous ST algorithms, it can be of practical interest because they can offer some
advantages over the homogeneous ones as e.g. they can be easier to apply in control (for example
Eq. (1) with p¼1) or they may provide stronger convergence or robustness properties (as for
example algorithm (2) presented below or the one proposed in [6]).

Our first objective in this paper is to propose a strict (or strong) Lyapunov function for the
STA (1). Note that strict Lyapunov functions are monotonically decreasing along trajectories, in
contrast to weak Lyapunov functions which are just non-increasing along trajectories. By means
of this Lyapunov function it is possible to show that, in the absence of perturbations, the
algorithm converges globally and in finite-time to the origin when 0opo1, and exponentially in
the cases p¼0 and p¼1. In the presence of a bounded perturbation δðtÞ the proposed Lyapunov
function is robust, i.e. it is monotonically decreasing along the trajectories of the system for all
possible perturbations, when 0opr1

2. The origin is locally, finite-time robustly stable for
appropriate selected gains k1 and k2 in the case 0opo1

2, whereas it is globally and finite-time
robustly stable in the homogeneous case p¼ 1

2. This last result can also be derived from the
homogeneity, since a locally asymptotically stable equilibrium point of negative homogeneity
degree is globally and finite-time stable [16]. We emphasize that for homogeneous algorithms
local stability implies global stability, but that this is not true for non-homogeneous systems.
In this paper we require to clearly distinguish when local or global stability can be assured.

We note that for the case p¼1 it is mentioned in [15] (a short proof and the Lyapunov function are
given in [8]) that, if the perturbation δðtÞ is smooth and it and its derivatives are bounded, the origin is
exponentially convergent. Our results in the present paper cannot reproduce this result for p¼1.

Since the signum function in the correction term of Eq. (1) is bounded, the trajectories of the
algorithm are very slow when they are far away from the origin. In order to improve the overall
performance it is usual to “switch” to a stronger (e.g. linear) dynamics outside a ball around the
origin [15,11]. For p¼ 1

2 in [18] this effect has been obtained by adding linear terms to Eq. (1), so
that a modified STA results

_x1 ¼ �k1ϕ1ðx1Þ þ x2

_x2 ¼ �k2ϕ2ðx1Þ þ δðtÞ; ð2Þ
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