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a b s t r a c t

We propose a newmethod to estimate the photometric redshift of galaxies by using the full galaxy image
in eachmeasured band. This method draws from the latest techniques and advances in machine learning,
in particular Deep Neural Networks. We pass the entire multi-band galaxy image into the machine
learning architecture to obtain a redshift estimate that is competitive, in terms of the measured point
predictionmetrics, with the best existing standardmachine learning techniques. The standard techniques
estimate redshifts using post-processed features, such as magnitudes and colours, which are extracted
from the galaxy images and are deemed to be salient by the user. This newmethod removes the user from
the photometric redshift estimation pipeline. However we do note that Deep Neural Networks require
many orders of magnitude more computing resources than standard machine learning architectures,
and as such are only tractable for making predictions on datasets of size ≤50k before implementing
parallelisation techniques.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

To maximise the cosmological information available from cur-
rent and upcoming large scale galaxy surveys, one requires robust
distance estimates to many galaxies. The distances to galaxies are
inferred by the distance-redshift relation which relates how the
galaxy light is stretched due to the expansion of the Universe as it
travels from the galaxy to our detectors. This stretching leads to an
energy loss of the photon and a shift towards redder wavelengths,
which is known as the redshift. The further away the galaxy is from
us, the longer the light has been passing through the expanding
Universe, and the more it becomes redshifted.

Obtaining very accurate spectroscopic redshifts, which mea-
sures the redshifted spectral absorption and emission lines, re-
quires very long exposure times on dedicated spectrographs and
is typically only performed for a small sub-sample of all galaxies.
Conversely, the measurement of multi-band photometric proper-
ties of galaxies ismuch cheaper. The compromise is then to attempt
to extract less accurate redshift information from photometrically
measured properties, but applied to a much larger galaxy sample.

Photometric redshift estimates are obtained from either
template fitting techniques, machine learning techniques, or some
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hybrid of the two for example using data augmentation (Hoyle
et al., 2015). The template methods are parametric techniques and
are constructed from templates of the Spectral Energy Distribution
of the galaxies. Some templates encode our knowledge of stellar
population models which result in predictions for the evolution
of galaxy magnitudes and colours. The parametric encoding of
the complex stellar physics coupled with the uncertainty of
the parameters of the stellar population models, combine to
produce redshift estimates which are little better than many
non-parametric techniques. See e.g., Hildebrandt et al. (2010),
Dahlen (2013) for an overview of different techniques. Unlike non-
parametric and machine learning techniques, the aforementioned
template methods do not rely on training samples of galaxies,
which must be assumed to be representative of the final sample of
galaxies for which redshift estimates are required. Other template
methods are generated either completely from, or in combination
with, empirical data, however these templates both require tuning,
and also rely upon representative training samples.

When an unbiased training sample is available, machine
learning methods offer an alternative to template methods to
estimate galaxy redshifts. The ‘machine architecture’ determines
how to best manipulate the photometric galaxy input properties
(or ‘features’) to produce amachine learning redshift. Themachine
attempts to learn the most effective manipulations to minimise
the difference between the spectroscopic redshift and themachine
learning redshift of the training sample.
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The field of machine learning for photometric redshift anal-
ysis has been developing since Tagliaferri et al. (2003) used ar-
tificial Neural Networks (aNNs). A plethora of machine learning
architectures, including tree based methods, have been applied to
the problem of point prediction redshift estimation (Sánchez and
Photometric, 2014) or to estimate the full redshift probability dis-
tribution function (Gerdes et al., 2010; Carrasco Kind and Brunner,
2013; Bonnett, 2015; Rau et al., 2015). Machine learning architec-
tures have also had success in other fields of astronomy such as
galaxymorphology identification, and star &quasar separation (La-
hav, 1997; Yeche et al., 0000).

The use of Deep Neural Networks (hereafter DNN) as the ma-
chine learning architecture has only recently been applied to prob-
lems in astrophysics. For example Dieleman et al. (2015) taught
a DNN to replicate the detailed morphological classifications ob-
tained by the citizen scientists answering questions within the
Galaxy Zoo 2 project (Willett et al., 2013) and obtained an accu-
racy of up to 99% on some classification questions, and (Hála, 2014)
examined the problem of spectral classification from Sloan Digital
Sky Survey (Ahn et al., 2014) (hereafter SDSS) spectra.

Within the standard machine learning approach the choice
of which photometric input features to train the machine
architecture, from the full list of possible photometric features, is
still left to the discretion of the user. The current author recently
performed an analysis of ‘feature importance’ for photometric
redshifts, which uses machine learning techniques to determine
which of themany possible photometric features produce themost
predictive power (Hoyle et al., 2015). The technique described in
this paper is the most extreme example of feature importance
possible.Weno longer need to impose our prior beliefs uponwhich
derived photometric features produce the best redshift predictive
power, or even measure the photometric properties. By passing
the entire galaxy image into the Deep Neural Network machine
learning framework we completely remove the user from the
photometric redshift estimation process.

Furthermore in order to use either the template or standardma-
chine learning techniques to estimate redshifts, the magnitudes,
colours, and other properties of the galaxies must be measured.
The analysis presented in this paper, which uses the full image of
the galaxy partially removes this requirement. Howeverwe do still
currently need the galaxy to have been detected so that we can
generate a postage stamp image.

The outline of the paper is as follows. In Section 2 we describe
the galaxy images and the pre-processing steps to prepare the
images for the Deep Neural Networks. We then introduce both
of the machine learning architectures in Section 3, and present
the analysis and results in Section 4. We conclude and discuss in
Section 5.

2. Galaxy data and images

The galaxy data in this study are drawn from the SDSS Data Re-
lease 10 (Ahn et al., 2014). The SDSS I–III uses a 2.4 m telescope at
Apache Point Observatory in New Mexico and has CCD wide field
photometry in 5 bands (Gunn et al., 2006; Smith et al., 2002), and
an expansive spectroscopic follow up programme (Eisenstein and
D.J., 2011) covering π steradians of the northern sky. The SDSS col-
laboration has obtained 2 million galaxy spectra using dual fibre-
fed spectrographs. An automated photometric pipeline performs
object classification to amagnitude of r ≈ 22 andmeasures photo-
metric properties of more than 100 million galaxies. The complete
data sample, and many derived catalogs such as the photometric
properties, and 5 band FITS images are publicly available through
the SDSS website.1

1 sdss.org.

We obtain 64,647 sets of images from the SDSS servers for
a random selection of galaxies which are chosen to pass the
following photometric selection criteria; the angular extent must
be less than 30 arc seconds as measured by the ‘Exponential’ and
‘de’ Vaucouleurs’ light profiles in the r band; and that each g, r, i, z
has magnitudes greater than 0. We further select galaxies which
pass the following spectroscopic selection criteria; the error on the
spectroscopic redshift to be less than 0.1 and the spectroscopic
redshift must be below 2. We check that none of the selected
galaxies have imageswithmissing ormasked pixel values. In detail
we run the MySQL query as shown in the appendix in the CasJobs
server.

We choose to obtain the galaxy image FITS files in the follow-
ing four photometric bands; g, r, i, z. This enables a closer resem-
blance to the bands available in other photometric surveys, for
example the Dark Energy Survey (The Dark Energy Survey Collab-
oration, 0000). Each pixel in the FITS file has a resolution of 0.396
arc seconds and contains the measured flux which has been cor-
rected for a range of observational and instrument effects such as
flat fielding and sky subtraction, in order to be suitable for astro-
nomical analysis. All pixel fluxes are converted to pixelmagnitudes
following Lupton et al. (1999). We apply a further extinction cor-
rection to account for galactic dust using themaps of Schlegel et al.
(1998) which is available from the photoObjAll table in the CasJobs
server. The extinction corrections are subtracted from the value of
magnitude in each pixel in the corresponding FITS files. We choose
to use FITS images of size 72×72 pixels, corresponding to 28.5 arc
seconds on a side.We have explored the use of other image dimen-
sions (32×32) but donot find improvement in the obtained results.
The chosen image size is motivated by, and closely follows earlier
work using SDSS images (Dieleman et al., 2015), and ensures that
the training times are tractable.

In the top row of Fig. 1 we show RGB jpeg images of three
example galaxies with the following mappings; g band magnitude
→ R, r band magnitude → G, and the i band magnitude → B.
All pixel magnitudes are further rescaled across the entire layer
to be integers within the range 0 to 255 for viewing purposes
only. We further modify these base images to be more suitable
for photometric redshift analysis by producing pixel colours from
the pixel magnitudes and map pixel colours to each RGB layer
pixel. We map the pixel colours i–z to the R layer pixels, r–i
to the G layer pixels, and g–r to the B layer pixels. Finally we
pass the r band pixel magnitude into an additional Alpha layer
to produce an RGBA image. The r band magnitude is often used
in this way to act as a pivot point which provides an overall
normalisation to the input data. This may be useful during training
and is common practice in photometric redshift analysis using
neural networks (see e.g., Brescia et al., 2014). Examples of these
modified images are shown in the second rowof Fig. 1, butwe show
only the RGB values for viewing purposes.

During the analysis we scale all of the images, such that the
maximum pixel value of 255 corresponds to the largest value
across all training and test images in each of the RGBA layers
separately. Likewise the minimum pixel value of 0 is set to be the
smallest value in each layer across all images.

For a comparisonwith standardmachine learning architectures
we obtain model magnitudes measured by the SDSS photometric
pipeline for each of the galaxies. To produce a fair comparison
with the image analysis, we choose to use the de-reddened model
magnitudes in the g, r, i, z bands and the size of each galaxy
measured by the Petrosian radius in the r band.

We randomly shuffle and subdivide the 64,647 galaxies into
training, cross-validation and test samples of size 33,167, 4047,
and 27,433. In what follows we train the machine learning
architectures on the training sample. We then vary the hyper-
parameters of the machine learning architecture and retrain a
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