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a b s t r a c t

A concept of the ground-based optical astronomical observation efficiency is considered in this paper.We
believe that a telescope efficiency can be increased by properly allocating observation tasks with respect
to the current environment state and probability to obtain the data with required properties under the
current conditions. An online observations scheduling is assumed to be an essential part for raising the
efficiency. The short-term online scheduling is treated as the discrete optimisation problems which are
stated using several abstraction levels. The optimisation problems are solved using the parallel depth-
bounded discrepancy search (PDDS) algorithm by Moisan et al. (2014). Some aspects of the algorithm
performance are discussed. The presented algorithm is a core of open-source chelyabinsk C++ library
which is planned to be used at 2.5m telescope of Sternberg Astronomical Institute of LomonosovMoscow
State University.
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1. Introduction

Since an efficiency is a philosophic concept, it is impossible to
give it a unique and precise definition both in general and in the
particular case of astronomical observations. Even when ground-
based optical astronomy is considered, different concepts are used
as an efficiency. In case of dedicated small robotic observatories,
open-shutter time is considered as a measure of an efficiency. A
fast cadence is desiredwhen surveys are performed. More classical
definition by Bowen (1964) assumes that efficiency is related to the
limiting magnitude of a telescope. In other words, it is assumed
that unexplored and challenging targets belong mostly to the faint
object area. In some sense, this assumption is still valid today.

Further, we accept Bowen point and try to develop this idea.We
consider a set of an atmosphere, an optical system and an equip-
ment as a single physical system used for carrying experiments
(astronomical observations in our case). Modern ground-based as-
tronomical observations are affected by different external factors,
for instance, an atmospheric optical turbulence is commonly men-
tioned as a phenomenon limiting optical angular resolution. Effect
of the optical turbulence does not remain the same but constantly
changes over the time. We may consider the physical system evo-
lution as a track in a phase space, where each axis corresponds to
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a physical quantity affecting astronomical observations. The phys-
ical quantities are divided into different groups. Those which do
not vary significantly over the time: a telescope aperture size, a
CCD readout noise, etc. The quantities which are under our con-
trol, for instance, equipment settings or a telescope mount posi-
tion. The last part is the quantities which are not under control:
an atmospheric optical turbulence power, an atmospheric extinc-
tion, a night sky brightness, etc. In other words, the system evolves
stochastically over corresponding axes.

It is assumed that the system is in the particular area of the
phase space during classical ground-based astronomical observa-
tions of a specific target. For instance, to carry out separate pho-
tometry of a binary star with the separation of 1.4′′, we have the
reasons to demand that the optical resolution should be well bet-
ter than 0.7′′. For each particular observation task a feasible area
has different size and form. Even more, time resources of almost
any modern general-purpose optical telescope are limited. Differ-
ent scientific tasks and programs have to compete with each other
for available resources.

The astronomical observation scheduling concept is usually di-
vided into a long-term scheduling and a short-term one. The long-
term scheduling considers time ranges of days, weeks, or months.
It may use some statistical information about environment, but
the long-term scheduling is not required to be performed online.
The short-term scheduling considers ongoing night and is usu-
ally thought as of online procedure using live data about environ-
ment (Gómez de Castro and Yáñez, 2003). Only short-term online
scheduling is considered further in the paper.
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The short-term online scheduling is supposed to raise an
efficiency at least by avoiding idles due to unfeasible conditions.
We essentially follow the idea behind Bowen formula that
supposes a telescope can be considered to be more efficient than
another one if more observation tasks can be carried out within
the same time interval (and time resources are left for more
observations).

We assume that for the upcoming night there is a task set
generated by a long-term scheduling process (either automatic or
manual). For any particular time moment of an ongoing night we
want to select an ordered subset of tasks to observe right now
and in the near future. It is assumed that the subset is selected in
globally effective way. We do not consider further what happens
with the tasks that have not been selected and have not been
observed. However, the most obvious way would be to return the
tasks to the long-term scheduler.

2. Optimisation problems

As soon as we talk about automatic scheduling (i.e. a kind
of algorithm in generic sense) a concept of efficiency has to
be operationalised in a specific way. A variety of astronomical
observational tasks (and scientific knowledge) is to be reduced to a
single number. Definitely, it cannot be doneuniquely andprecisely.
Nevertheless, the following quantities are introduced.

Let T be a set of all available observational tasks. For any
observational task i ∈ T let pi(t|θ) be conditional success probabil-
ity viewed as a function of task observation start time moment t .
Here the current system state (which is the system state history in
essence) is denoted by θ and will be skipped in the further equa-
tions for brevity. An observation task is said to be successfully car-
ried out when the system is in appropriate area of the state space
during observation of the task. We assume that the system tra-
jectory in the state space can be somehow forecasted given that
the current state θ is known. The state is supposed to be known
by means of dedicated monitoring systems (Colomé et al., 2010)
or by means of online observation processing pipelines (Delgado
and Schumacher, 2014). A relative weight of observational task is
called an yield and is denoted by yi(t). The set T is considered to
be finite, then without loss of generality, it can be assumed that
0 ≤ yi(t) ≤ 1. A set of all non-empty finite sequences consisted of
members of T is denoted by T+. Let S ∈ T+ be a non-empty finite
task sequence, further we assume that ∀i ≠ j, Si ≠ Sj. The number
of elements in S is denoted by |S|.

Finally, a total yield is defined as the following:

Y =

|S|
i=1

ySi(tSi)ξSi(tSi), (1)

where ξSi(tSi) are random binary variables being 1with probability
of pSi(tSi). All ξi are assumed to be independent for the sake of
simplicity. tSi are introduced in the following recurrent manner:

tSi+1 = tSi + dSi(tSi) + sSi,Si+1


tSi + dSi(tSi)


, (2)

where tS1 is the initial timemoment.Without loss of generality, one
may assume that tS1 = 0. dSi(t) is a duration of task observation
process when started at t , sSi,Si+1(t) denotes a setup time required
to start task Si+1 after task Si has been completed. The mean of (1)
is called a mean total yield:

Y ≡ E [Y] =

|S|
i=1

ySi(tSi)pSi(tSi). (3)

Note that the total yield is the weighted number of successfully
completed observational tasks in essence.

By the previous assumptions, the probability of finite task
sequence S success is the following:

Π =

|S|
i=1

pSi(tSi). (4)

Let us state two following discrete optimisation problems
which are considered further as observational scheduling prob-
lems. Then, mean total yield maximisation problem is

Y ∗
= max

S∈T+


|S|
i=1

ySi(tSi)pSi(tSi)


. (5)

Success probability maximisation problem is

Π∗
= max

S∈T+


|S|
i=1

pSi(tSi)


. (6)

Constraints for sequence length are provided for both of the
problems. In the first case:
tS|S| + d(tS|S|) ≤ D, (7)
in the second case:
tS|S| ≥ D, (8)
where D has a sense of scheduling horizon or sunrise moment.
The function S∗(θ) = argmaxS∈T+

|S|
i=1 ySi(tSi)pSi(tSi |θ)


(and

its analogue for case (6)) is also usually called as decision process
a-priory policy.

Therefore, we connect a concept of ground-based astronomical
observations efficiency with the yield in (5), or with success
probability in (6). The problems are complementary in some sense.
The number of successes is maximised in (5) and the number of
failures is minimised in (6). These quantities are based on some
natural concepts (i.e. number of performed tasks) and replicate
existingmodels (Gómez de Castro and Yáñez, 2003) in some sense.

Let us again emphasise that there is a crucial logical gap
between philosophical concept and any its specific numerical
measure. Thus, instead of giving ultimate formal proof of
equivalence between a concept and its measure, we can consider
the measure only as a representation for the concept. It is for
end users to decide whether the particular measure is relevant
to the concept. The decision is based on current understanding
what the telescope efficiency concept really is under particular
circumstances. Moreover, the understanding will inevitably be
changed as gaining practical experience. Therefore, our approach
should be flexible enough to be modified in future with new
demands.

Consequently, it is also impossible to determine which ap-
proach (mean total yield maximisation problem (5) or success
probability maximisation problem (6)) is the most right one, be-
cause the comparison is possible only on philosophical or method-
ological levels, which is behind the scope of this paper. Indeed, let
S∗

1 and S∗

2 be solutions for (5) and (6) respectively. Also, let f be
a metric such that the higher the value f (S∗

1,2) the more correctly
and more adequately the problem has been formulated. Then (5)
and (6) are to be considered as approximations to the maximisa-
tion problem of f (S) which is actually being solved and f is implic-
itly considered as another efficiency measure.

2.1. Forms of p(t), d(t), s(t)

Let us consider possible forms of the functions p(t), d(t),
and s(t) from (5) and (6). Also it will become more clear what
we assume as an abstraction called an observational task. All
tasks of T may have different origin, but the functions p(t), d(t),
and s(t) form an abstraction level between physical model and
the optimisation problem. Further we consider different kinds
(or classes) of observational tasks: a group, a repeat, CCD-based
photometry task.
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