
Astronomy and Computing 16 (2016) 146–154

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

AdiosStMan: Parallelizing Casacore Table Data System using Adaptive
IO System
R. Wang a,∗, C. Harris b, A. Wicenec a

a International Centre for Radio Astronomy Research, The University of Western Australia, M468, 35 Stirling Hwy, Crawley, Western Australia 6009,
Australia
b Pawsey Supercomputing Centre, 26 Dick Perry Ave, Kensington, Western Australia 6151, Australia

a r t i c l e i n f o

Article history:
Received 21 October 2015
Accepted 5 May 2016
Available online 21 May 2016

Keywords:
Data format
Casacore
ADIOS
Storage manager
Parallel I/O
CASA

a b s t r a c t

In this paper, we investigate the Casacore Table Data System (CTDS) used in the casacore and CASA
libraries, andmethods to parallelize it. CTDSprovides a storagemanager pluginmechanism for third-party
developers to design and implement their own CTDS storage managers. Having this in mind, we looked
into various storage backend techniques that can possibly enable parallel I/O for CTDS by implementing
new storagemanagers. After carrying on benchmarks showing the excellent parallel I/O throughput of the
Adaptive IO System (ADIOS), we implemented an ADIOS based parallel CTDS storage manager. We then
applied the CASA MSTransform frequency split task to verify the ADIOS Storage Manager. We also ran a
series of performance tests to examine the I/O throughput in a massively parallel scenario.

© 2016 Elsevier B.V. All rights reserved.

Contents

1. Introduction..146
2. Casacore Table Data System (CTDS) & storage backends ..147
3. Benchmarking HDF5 and ADIOS ...148

3.1. Scenario ..148
3.2. Testbed ...148
3.3. Result ..149

4. ADIOS storage manager ...149
5. MeasurementSet table experiment ..150

5.1. Frequency split on CHILES MeasurementSet data ...150
5.2. Outcomes and improvements to AdiosStMan ...151

6. Parallel I/O performance testing ...152
6.1. Parallel array write test ...152
6.2. Array read test..153

7. Conclusion ..153
7.1. Future work..154
Acknowledgments ...154
References...154

1. Introduction

Modern radio astronomy is entering the era of big data.With the
radio interferometry technique, the data production of a telescope

∗ Corresponding author.
E-mail addresses: jason.wang@icrar.org (R. Wang), chris.harris@pawsey.org.au

(C. Harris), andreas.wicenec@icrar.org (A. Wicenec).

scales quadratically with the number of antennas (Wang and
Harris, 2013). Next generation radio telescopes, such as the Square
Kilometre Array (SKA), will consist of thousands of antennas.
Together with the prospective high frequency resolution and long
baselines, it will produce petabytes of data per day (Dewdney,
2013). The traditional method of processing radio astronomy data
on desktops or workstations will have to be replaced by large scale
clusters or supercomputers, in order to tackle the compute and
data challenge.

http://dx.doi.org/10.1016/j.ascom.2016.05.003
2213-1337/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ascom.2016.05.003
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2016.05.003&domain=pdf
mailto:jason.wang@icrar.org
mailto:chris.harris@pawsey.org.au
mailto:andreas.wicenec@icrar.org
http://dx.doi.org/10.1016/j.ascom.2016.05.003

R. Wang et al. / Astronomy and Computing 16 (2016) 146–154 147

However, most software packages and data formats tradition-
ally used in radio astronomy data processing are poorly par-
allelized. For instance, one of the most widely used software
package for radio astronomy, the Common Astronomy Software
Applications (CASA) library, used to only have OpenMP level par-
allelism that can collaboratively work on a maximum of a single
node. Introducing inter-node parallelism has long been planned,
but it is only very recently that CASA has started to support MPI
for some of its algorithms. For data I/O, the Casacore Table Data
System (van Diepen, 2015a) (CTDS) built-into the casacore library,
used to only allow one process to write data to a table at a time. It
can be worked around by virtually concatenating multiply physi-
cal tables into a single logical table, so that from the logical table’s
perspective, it can be written in parallel. However, there still has
not been concrete solutions for parallel writing at the physical ta-
ble level, which could be important for optimizing the I/O perfor-
mance at the SKA scale.

Therefore, considering the data volume that next generation
radio telescopeswill generate, there is a possibility that the current
data I/O technique becomes invalid. It could be because of the
enormous amount of files beyond the capability of any filesystems.
Or it could be because that data is too large to duplicate or move
around, but can only be put into as few tables as possible where
any applications can get access simultaneously. This paper focuses
on parallel data I/O issues of the Casacore Table Data System. We
will first look into the CTDS architecture, and then summarize the
parallel I/O techniques that can potentially be used to parallelize
CTDSwithout breaking the underlying architecture. Following this,
we will present our parallel CTDS storage manager design and
implementation, as well as related testing results.

2. Casacore Table Data System (CTDS) & storage backends

The casacore library (van Diepen, 2015b) is a set of common ra-
dio astronomy functions implemented in C++, originally derived
from the AIPS++ library. As it forms the core algorithm com-
ponent of the CASA (Common Astronomy Software Applications
(McMullin et al., 2007)) library, it is currently one of the most
widely used radio astronomy libraries. Casacore has a well de-
signed data I/O subsystem, namely the Casacore Table Data System
(CTDS), which can handle terabyte-scale astronomy data effi-
ciently. The Casacore Table Data System provides an abstract layer
to data by defining the storage manager interface. Each column, or
a group of columns, of a CASA table can be assigned with a storage
manager that handles the actual I/O operations interacting with
the storage backends. This essentially allows the substitution of
the built-in storage managers with custom ones that are based on
third-party storage backends.

A CTDS table can be operated frommultiple writers, but only in
serial. While one writer is writing data into a CTDS table, it locks
the table and prevents others from writing until it is finished. The
built-in storage managers of casacore are also designed to comply
with this serial writing mechanism. As of now, in the newest
version of casacore, 2.0.3, the lock mechanism can be disabled
at compile time. However, errors are still seen when multiple
processes operate on a single table through this non-locking access.
There has been another workaround in CASA 4.5, which virtually
concatenates multiple physical CTDS tables into one logical table,
and thus enables parallel writing at the logical table layer. At the
physical table level, there still has not been concrete solutions
for parallel writing. Taking advantage of the storage manager
interface, a promising direction would be to implement a custom
storage manager based on a parallel storage backend and enabling
parallelism at the physical table layer.

There are several categories of parallel storage backends that
potentially work with CTDS, including filesystem based data
formats, databases, database engines, and distributed object stores.
Traditionally, filesystem based data formats have been the most
effective way of dealing with scientific data. This is because
they usually target a particular science scenario, or an abstract
group of science scenarios. A reflection of this is that these data
formats are usually designed and optimized for numerical arrays,
where other storage backend categories traditionally give very
little consideration. Moreover, without involving overheads by
reserving functionalities for index, query, security and so on, data
files can be accessed for reading and writing quite efficiently,
sometimes approaching the theoretical I/O bandwidth of storage
hardware. Some good examples of filesystem based data formats
are FITS (Flexible Image Transport System (Wells et al., 1981)),
HDF5 (Hierarchical Data Format Version 5 (Folk et al., 1999)) and
ADIOS (Adaptive IO System (Jin et al., 2008)). In these data formats,
FITS has been most commonly used in radio astronomy. However,
there has long been a debate on how far FITS can still go since it
does not support parallel I/O (Wells, 1997; Price et al., 2014). HDF5
and ADIOS are more suitable solutions for future systems that
desire a parallel storage backend. Especially, ADIOS is essentially
designed for large scale parallel IO, and in some cases, proved to be
1000 times faster than other parallel I/O libraries (Lofstead et al.,
2009).

Over the last decade, another trend for managing scientific
data is to use databases or a hybrid database and data file
approach. This is because using the traditional filesystem based
data formats, the management of metadata is usually relying on
directory hierarchies and file names, which may not be easily
scalable when it comes to petabyte scale data (Gray et al., 2005).
However, very few traditional databases are actually optimized for,
or even compatiblewith, themajor form of scientific data, numeric
arrays. Our preliminary investigation shows that one of the few
databases that target scientific data, SciDB (Paradigm4 Inc., 2015),
performs one to two orders of magnitude slower than ADIOS or
the casacore built-in storage manager, when given hundreds of
large floating point arrays. An improved solution is to directly use
high performance database engines, or storage engines. A good
example is WiredTiger (MongoDB, Inc., 2015b), which has been
recently adopted inMongoDB (MongoDB, Inc., 2015a) as one of the
optional underlying storage engines. This bypasses the database
interface layer, and thus could possibly provide higher throughput
than using a fully functioned database.

Similar ideas can also apply to filesystem based approaches.
Currently someparallel distributed filesystems, Lustre for instance,
are essentially based on object stores, while modern object stores,
such as Ceph (Red Hat, Inc., 2015), do also provide filesystem
interfaces. This implies the possibility that higher throughput
could also be expected by bypassing the filesystem interface
and directly using object stores as the storage backend. One
difficult problem of this approach is that data centres do not
always provide such low-level interfaces to end users, but rather
usually a filesystem interface only. In the meanwhile, setting up
and maintaining such an object store on dedicated facilities at a
sensible scale could be a considerable expense. This largely limits
the universality of a pure object store based storage backend
model.

In this paper, we mainly focus on filesystem based data
formats, as they proved to achieve relatively high throughputs
at a reasonable cost in terms of both software development
and hardware requirement. For the selection of the storage
backend technique, we will summarize one of our representative
preliminary investigations and present in the next section.

Download English Version:

https://daneshyari.com/en/article/497547

Download Persian Version:

https://daneshyari.com/article/497547

Daneshyari.com

https://daneshyari.com/en/article/497547
https://daneshyari.com/article/497547
https://daneshyari.com

