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a b s t r a c t

Inmolecular clouds, stars are formed fromamixture of gas, plasma anddust particles. The dynamics of this
formation is still actively investigated and a study of dust coagulation canhelp to shed light on this process.
Starting from a pre-existing discrete coagulation model, this work aims to mathematically explore its
properties and its suitability for numerical validation. The crucial step is in our reinterpretation from
its original discrete to a well-defined continuous form, which results in the well-known Smoluchowski
coagulation equation. This opens up the possibility of exploiting previous results in order to prove the
existence and uniqueness of a mass conserving solution for the evolution of dust grain size distribution.
Ultimately, to allow for a more flexible numerical implementation, the problem is rewritten as a non-
linear hyperbolic integro-differential equation and solved using a finite volume discretisation. It is
demonstrated that there is an exact numerical agreement with the initial discrete model, with improved
accuracy. This is of interest for further work on dynamically coupled gas with dust simulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The matter which fills the space between the stars consists
of rarefied gas, small dust particles – the so called interstellar
medium (ISM) – magnetic fields and background radiation. While
dust accounts only for a small part of the total mass of the ISM
(∼1% (Spitzer, 1954)), its presence is of the utmost importance
as its absorption and scattering (mainly at ultraviolet and optical
wavelengths) and its (re-)emission (mainly in (far) infrared
wavelengths) of incoming radiation provides the possibility to gain
detailed knowledge of the ISM. Furthermore, as demonstrated in
coupled gas–dust simulations of well-observed shear flow regions
in the Orion nebula, performed in Hendrix et al. (2015), dust can
influence the dynamics of the ISM, leading to the formation of
observable structures in molecular cloud environments, in which
stars and planets are ultimately formed. From recent observational
data it is known that in molecular clouds, dust grains can reach
micrometre scales (Pagani et al., 2010; Steinacker et al., 2010),
becoming much larger than their typical size in the diffuse ISM
∼250 nm (Kim et al., 1994). By using adequate models of grain
coagulation and accretion to simulate growth of dust grains in
molecular clouds, one can try to understand the environment in
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which grains grow to a substantial size, and on which time scales
such growth is to be expected. In combination with observations,
this allows an estimation of the life expectancy of a molecular
cloud, and can even provide insight into the typical time scales of
star formation processes (Hirashita and Li, 2013).

The role of dust coagulation is also important in protoplanetary
disks, and in that context, it has been investigated intensely
in the last decade. We limit ourselves to discuss a selection of
findings that are likely also relevant for dense molecular cloud
cores. Dust evolution in terms of its particle size distribution
and its tendency to settle towards the midplane of a (quiescent
or turbulent) protoplanetary disk was studied by Nomura and
Nakagawa (2006), for the case of the solar nebula. The authors
solve a coagulation equation (their Eq. (12)) that includes a vertical
mass transport term of interest for dust settling in protoplanetary
disks, and use it to obtain dust size distributions as a function of
time and disk height at the orbits of Earth, Jupiter or Neptune.
The main finding was that a gravitationally unstable layer of dust,
with particles up to centimetre sizes, can form at distances 1–30
AU in a quiescent disk. Ormel et al. (2007) also investigated the
solar nebula case, and used a Monte Carlo approach to, in essence,
avoid the direct numerical integration of the collision/coagulation
model expressed by an (extended) Smoluchowski equation (their
Eq. (20)). Using Monte Carlo traces growth of individual particles
directly, and can recover the evolution of the particle size
distribution function, when binning over particle masses. In the
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protoplanetary disk context, it was found that the collisional
evolutions are influenced by the coupling between dust and gas
motions, depending intricately on the internal structure of the
grains (in particular, on their porosity). In the present paper, we
will discuss equivalent ways to handle the direct integration of the
Smoluchowski equation, inspired by the work by Hirashita (2012).

Mathematical models for grain–grain interactions have been
improved in the last decade, and Hirashita’s work in Hirashita and
Yan (2009), Hirashita (2012) and Hirashita and Li (2013) presents
discrete models for coagulation, accretion and fragmentation of
dust, whilst keeping the dust decoupled from the gas dynamics.
Focusing only on coagulation, the purpose of this paper is
to validate the discrete model in Hirashita (2012), study its
properties, and propose a different numerical implementation
adapted to improve the coupling with gas dynamics. The crux
of the study is the relationship identified with the well known
Smoluchowski equation, introduced first in 1916 Smoluchowski
(1916) andwidely studied since. This result is obtained by deriving
the continuous form of the discrete coagulationmodel in Hirashita
(2012), which yields the Smoluchowski equation with a specific
kernel.

The role of the Smoluchowski equation in coagulation and
porosity evolution of dust species in protoplanetary disks is
exploited fully in Okuzumi et al. (2009), where the distribution
function of aggregates, whose evolution is governed by a
Smoluchowski equation (their Eq. (1)), was allowed to depend on
both mass and volume of the dust aggregates. A so-called volume-
averaging procedure rephrases attention to evolution equations for
the moments of the distribution function. In doing so, one needs a
suitable truncation to circumvent the problem that this procedure
introduces ever higher order moment dependences. In our work,
we will use a simple dust coagulation model and demonstrate
clearly the various equivalent means to formulate it discretely or
continuously, and show the advantages of using a conservative
formulation. This is needed in preparation for fully dynamic
gas–dust evolutions, which simultaneously handle evolving dust
size distributions. Once more, protoplanetary studies by Birnstiel
et al. (2010) already made progress in handling the coupled gas
plus dust evolution consistently, where a time-dependent viscous
disk is incorporated as far as its radial dependences are concerned.
In Birnstiel et al. (2010), the governing Smoluchowski equation
was vertically integrated, using Gaussian kernels to handle some
of the involved integrals analytically. A flux-conserving donor-cell
scheme was then used to numerically integrate the set of two
advection–diffusion equations for the surface densities of gas and
dust species, togetherwith the vertically integrated Smoluchowski
equation.

The computational cost of correctly simulating dust in full
3D dynamical models (i.e. not relying on vertically integrated
prescriptions) is considerable, as dust grains are highly diverse and
have complex compositions and morphologies. Most importantly,
they cover a size distribution range which spans more than
ten orders of magnitude in locations such as protoplanetary
disks (Testi et al., 2014). Only few numerical simulations have
taken the effect of dust into account, and those that do have made
simplifying assumptions: e.g. the works of Saito (2002), Miniati
(2010) and Laibe and Price (2012) used a two-fluid approach in
which only one discrete dust size is considered, while the work
by Hendrix and Keppens (2014), Hendrix et al. (2015) and Hendrix
and Keppens (2015) adopted a fixed size distribution for all times,
where individual grain size bins do not communicate through
coagulation or shattering processes, but where each size bin is
coupled dynamically to the gas as a pressureless fluid subject
to (size-dependent) drag-forces. This approach was pioneered
in protoplanetary disk studies in Paardekooper and Mellema
(2006). In an early study of protoplanetary disks, a 2.5D (axially

symmetric) model by Suttner and Yorke (2001) did explore the
coupling of gas with dust using up to 30 dust size bins, and showed
the importance of dust coagulation in the first 1000 years of the
protostellar accretion disk.

The outline of this paper is as follows. Since we focus on a
specific model as studied in discrete form by Hirashita and Li
(2013), Hirashita (2012) and Hirashita and Yan (2009), we opt
to summarise Hirashita’s work as presented in Section 2. The
corresponding continuous model is derived in Section 3. The
properties of the model are then studied in Section 4, where the
existence of a unique mass conserving solution is proven, relying
heavily on existing literature on the Smoluchowski equation. In
Sections 5 and 6, a continuously conservative alternative form is
outlined, together with its finite volume approximation, following
the work in Filbet and Laurençot (2004). Ultimately, the initial and
the modified numerical models are compared in Section 7.

2. The discrete model

This section focuses on the discrete coagulation model by Hi-
rashita (2012), which describes how dust grain size distribution
n evolves in time, in dense cores of molecular clouds. Discarding
the spatial dynamics; which would require a coupling with the
gas dynamics; it is possible to write the distribution as a function
n(a, t) only of particle size a and time t . In the discrete model used
in Hirashita (2012), n is hidden in the discrete variable ρi which
represents the mass density of all grains with mass in the range
[mi−1/2,mi+1/2]:

ρi(t) =

 mi+1/2

mi−1/2

n̂(m, t)mdm ∼ n̂(mi, t)mi[mi+1/2 − mi−1/2], (1)

where n̂(m, t) is the number density as a function of the grain
massm instead of the grain size, which is related to n(a, t) through
dNgr/V = n(a, t) da = n̂(m, t) dm, where Ngr(t) is the total
number of dust grains at time t in a volume V . The index i ranges
from 1 to N , with N the total number of dust bins in the discrete
model such that∪i(mi−1/2,mi+1/2) covers the total interval of grain
masses considered.

The discrete model for dust coagulation taken from Hirashita
(2012) reads:

ρn+1
i − ρn

i

∆t
= −Q−

+ Q+, (2)

at the left hand side, an explicit Euler scheme is used for the time
evolution of the discrete variable ρi and the superscript index n
(here, n is not the grain size distribution anymore) accounts for the
time discretisation. At the right hand side, Q− represents the loss
term of the ith bin, due to the coagulation between grains in the
ith bin and all grain sizes. Q+ instead is the gain term of the ith bin,
given by all the interactions between smaller grains that give rise
to grains of ith mass. These terms are all evaluated at time level n
(explicit) and characterised as follows

Q−
= miρi

N
l=1

αliρl, (3)

Q+
=

N
j=1

N
l=1

αljρlρjmlj
coag(i). (4)

In the expressions, αlk is a weight matrix:

αlk =
σlkvlk

mkml
. (5)

Here, σlk = π(al + ak)2 is the cross section, note that the sizes
al, ak can be seen as function of grain mass m, since the grains are
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