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Abstract

We construct a cut finite element method for the membrane elasticity problem on an embedded mesh using tangential differential
calculus, i.e., with the equilibrium equations pointwise projected onto the tangent plane of the surface to create a pointwise
planar problem in the tangential direction. Both free membranes and membranes coupled to 3D elasticity are considered. The
discretization of the membrane comes from a Galerkin method using the restriction of 3D basis functions (linear or trilinear) to the
surface representing the membrane. In the case of coupling to 3D elasticity, we view the membrane as giving additional stiffness
contributions to the standard stiffness matrix resulting from the discretization of the three-dimensional continuum.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we construct finite element methods for linearly elastic membranes embedded in three dimensional
space meshed by tetrahedral or hexahedral elements. These meshes do not in general align with the surface of the
membrane which instead cuts through the elements. For the modeling of the membrane problems we use tangential
differential calculus, introduced for the modeling of surface stresses by Gurtin and Murdoch [1] and for shell models
by Delfour and Zolésio [2]. The tangential approach was pioneered for use in finite element methods by Dziuk [3] for
discretizing the Laplace–Beltrami operator on meshed surfaces, and has become a standard method of developing dis-
crete schemes on surfaces, cf. Dziuk and Elliott [4] and references therein. The approach was subsequently employed
by Hansbo and Larson [5] for meshed membranes, and the aim of this paper is to extend this work following Olshan-
skii, Reusken, and Grande [6] and construct a Galerkin method by using restrictions of the 3D basis functions defined
on the three-dimensional mesh to the surface. This approach can lead to severe ill conditioning, so we adapt a stabi-
lization technique proposed by Burman, Hansbo, and Larson [7] for the Laplace–Beltrami operator to the membrane
problem.
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The main application that we have in mind is the coupling of membranes to 3D elasticity. This allows for the mod-
eling of reinforcements, such as shear strengthening and adhesive layers. We emphasize, however, that the mechanical
modeling herein is restricted in the sense that we simply add membrane stiffness to a continuous 3D approximation.
For more accurate mechanical modeling, say of adhesives, the 3D mesh must also be cut to incorporate, e.g., the
imperfect bonding approach of Hansbo and Hansbo [8], allowing for relative motion of the continuum on either side
of the adhesive. This extension is not explored in this paper but has been considered in a discontinuous Galerkin
setting in [9]. The idea of adding stiffness from lower-dimensional structures is a classical approach, cf. Zienkiewicz
[10, Chapter 7.9], using element sides or edges as lower dimensional entities. Letting the membranes cut through the
elements in an arbitrary fashion considerably increases the practical modeling possibilities.

The paper is organized as follows: in Section 2 we introduce the membrane model problem and the finite element
method for membranes and embedded membranes; in Section 3 we describe the implementation details of the method;
and in Section 4 we present numerical results.

2. The membrane model and finite element method

2.1. Tangential calculus

In what follows, Γ denotes an oriented surface, which is embedded in R3 and equipped with exterior normal nΓ .
The boundary of Γ consists of two parts, ∂ΓN, where zero traction boundary conditions are assumed, and ∂ΓD where
zero Dirichlet boundary conditions are assumed.

We let ρ denote the signed distance function fulfilling ∇ρ|Γ = nΓ .
For a given function u : Γ → R we assume that there exists an extension ū, in some neighborhood of Γ , such that

ū|Γ = u. Then the tangent gradient ∇Γ on Γ can be defined by

∇Γ u = PΓ∇u (1)

with ∇ the R3 gradient and PΓ = PΓ (x) the orthogonal projection of R3 onto the tangent plane of Γ at x ∈ Γ given
by

PΓ = I − nΓ ⊗ nΓ (2)

where I is the identity matrix. The tangent gradient defined by (1) is easily shown to be independent of the extension
u. In the following, we shall consequently not make the distinction between functions on Γ and their extensions when
defining differential operators.

The surface gradient has three components, which we shall denote by

∇Σ u =:


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For a vector valued function v(x), we define the tangential Jacobian matrix as the transpose of the outer product of
∇Γ and v,

(∇Γ ⊗ v)T
:=
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 ,

the surface divergence ∇Γ · v := tr∇Γ ⊗ v, and the in-plane strain tensor

εΓ (u) := PΓ ε(u)PΓ , where ε(u) :=
1
2


∇ ⊗ u + (∇ ⊗ u)T


is the 3D strain tensor.
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