

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Journal of the Franklin Institute 349 (2012) 559-577

Journal of The Franklin Institute

www.elsevier.com/locate/jfranklin

Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle **

Xiaoxiang Hu^{a,b}, Ligang Wu^a, Changhua Hu^b, Huijun Gao^{a,*}

^aSpace Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, PR China ^b302 Unit, Xi'an Research Institute of High-tech, Xi'an 710025, PR China

Received 16 February 2011; received in revised form 29 June 2011; accepted 8 August 2011 Available online 22 August 2011

Abstract

This paper is concerned with the adaptive sliding mode control (ASMC) design problem for a flexible air-breathing hypersonic vehicle (FAHV). This problem is challenging because of the inherent couplings between the propulsion system, the airframe dynamics and the presence of strong flexibility effects. Due to the enormous complexity of the vehicle dynamics, only the longitudinal model is adopted for control design in the present paper. A linearized model is established around a trim point for a nonlinear, dynamically coupled simulation model of the FAHV, then a reference model is designed and a tracking error model is proposed with the aim of the ASMC problem. There exist the parameter uncertainties and external disturbance in the model, which are not necessary to satisfy the so-called matched condition. A robust sliding surface is designed, and then an adaptive sliding mode controller is designed based on the tracking error model. The proposed controller can drive the error dynamics onto the predefined sliding surface in a finite time, and guarantees the property of asymptotical stability without the information of upper bound of uncertainties as well as perturbations. Finally, simulations are given to show the effectiveness of the proposed control methods.

© 2011 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

E-mail address: hjgao@hit.edu.cn (H. Gao).

[★]This work was partially supported by National Natural Science Foundation of China (61174126, 90916005, 61025014 & 60736026), Aviation Science Fund of China (2009ZA77001), and the Natural Science Foundation of Heilongjiang Province of China (F201002).

^{*}Corresponding author.

Nomenclature

```
C_D(\alpha, \delta_e) drag coefficient
            ith order coefficient of \alpha contribution to C_D(\alpha, \delta_e)
C_D^{\delta_e^i} ith order coeffice C_D^0 constant term in C_L(\alpha, \delta_e) lift coefficient
            ith order coefficient of \delta_e contribution to C_D(\alpha, \delta_e)
            constant term in C_D(\alpha, \delta_e)
            ith order coefficient of \alpha contribution to C_L(\alpha, \delta_e)
            coefficient of \delta_e contribution to C_L(\alpha, \delta_e)
            constant term in C_L(\alpha, \delta_e)
C_{M,Q}(\alpha,Q) contribution to moment due to pitch rate
C_{M,\alpha}(\alpha) contribution to moment due to angle of attack
C_{M,\delta_c}(\delta_e,\delta_c) control surface contribution to moment
C_{M,\alpha}^{\alpha_i}
            ith order coefficient of \alpha contribution to C_{M,\alpha}(\alpha)
C_{M,\alpha}^{(n),\alpha} constant term in C_{M,\alpha}(\alpha)

C_T^{(\alpha)}(\Phi) ith order coefficient of \alpha in T
            mean aerodynamic chord
            Canard coefficient in C_{M,\delta_e}(\delta_e,\delta_c)
c_c
            elevator coefficient in C_{M,\delta_e}(\delta_e,\delta_c)
c_e
D
            acceleration due to gravity
g
h
            altitude
            moment of inertia
I_{vv}
            left
L
L_v
            vehicle length
M
            pitching moment
            vehicle mass
            ith generalized force
           ith order contribution of \alpha to N_i
            constant term in N_i
            contribution of \delta_e to N_2
\frac{Q}{\overline{q}}
            pitch rate
            dynamic pressure
            reference area
T
            trust
V
            velocity
            state of the control-oriented model
х
α
            angle of attack
\beta_i(h,\overline{q}) ith thrust fit parameter
\frac{\gamma}{\delta_c}
            flight path angle, \gamma = \theta - \alpha
            Canard angular deflection
            elevator angular deflection
            damping ratio for the \Phi dynamics
            damping ratio for elastic mode \eta_i
            ith generalized elastic coordinate
\eta_i
```

Download English Version:

https://daneshyari.com/en/article/4975853

Download Persian Version:

https://daneshyari.com/article/4975853

<u>Daneshyari.com</u>