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Abstract

We propose a new, optimally accurate numerical regularization/stabilization for (a family of) second order timestepping methods
for the Navier–Stokes equations (NSE). The method combines a linear treatment of the advection term, together with stabilization
terms that are proportional to discrete curvature of the solutions in both velocity and pressure. We rigorously prove that the entire
new family of methods are unconditionally stable and O(∆t2) accurate. The idea of ‘curvature stabilization’ is new to CFD and is
intended as an improvement over the commonly used ‘speed stabilization’, which is only first order accurate in time and can have
an adverse effect on important flow quantities such as drag coefficients. Numerical examples verify the predicted convergence rate
and show the stabilization term clearly improves the stability and accuracy of the tested flows.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

We consider optimally accurate stabilizations for second order time-stepping methods for the Navier–Stokes
equations (NSE) on a bounded domain Ω ⊆ Rd , d = 2 or 3:

ut + u · ∇u − ν△u + ∇ p = f, for x ∈ Ω , 0 < t ≤ T, (1.1)

∇ · u = 0, for x ∈ Ω , 0 < t ≤ T,

u = 0, on ∂Ω , for 0 < t ≤ T,

u(x, 0) = u0(x), for x ∈ Ω ,

with the pressure satisfying the usual zero-mean normalization.
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Developing efficient, accurate, and robust numerical methods for solving the NSE remains a great challenge
in Computational Fluid Dynamics (CFD). For time-stepping methods, common approaches combine linearizations
at each time step with stabilizations/regularizations that damp oscillations and unstable modes. An important
linearization method is CNLE (Crank–Nicolson with linear extrapolation), proposed by Baker [1], which is
comparable in stability and accuracy with the more expensive, fully implicit Crank–Nicolson (CN) method, [2–4].
However, while a nonlinear solver for CN requires several linear solves at each time step, CNLE requires just one.
A similar linearization exists for BDF2 timestepping (called BDF2LE). Herein, we will consider a new, optimally
accurate stabilization to be used with CNLE, BDF2LE, and the family of methods ‘in between’ them. Recall this
family of methods (without stabilization) is given by

(θ +
1
2 )un+1 − 2θun + (θ −

1
2 )un−1

△t
− θν△un+1 − ν (1 − θ) △un

+ ((θ + 1)un − θun−1) · ∇ (θun+1 + (1 − θ)un) + θ∇ pn+1 + (1 − θ)∇ pn = fn+θ , (1.2)

∇ · un+1 = 0, (1.3)

where θ ∈


1
2 , 1


. If θ = 1, BDF2LE is recovered, and if θ =

1
2 , then CNLE is recovered. For any other θ ∈ ( 1

2 , 0),

a second order method is still recovered. Since CNLE exactly conserves energy, and BDF2LE numerically dissipates
it, the parameter θ can be used to control the dissipation.

A successful stabilization method to be used with (1.2) must be able to damp the instabilities that frequently arise
in NSE simulations, but without over-smoothing or removing important flow structures, i.e. without hurting accuracy.
A common approach for these timestepping methods is to add −α∆un+1 to the left hand side, and −α∆un to the right
hand side, where α is a tuning parameter generally taken to be on the order of the meshwidth h. Such a stabilization
has been used in methods for Navier–Stokes (see [5,6] and references therein), and is related in principle to techniques
used in turbulence modeling [7,8], ocean modeling [9], and also to the discretization of the ‘Voigt term’ in a turbulence
model recently studied by Titi and others, e.g. [10,11]. As shown in these works, this stabilization can be effective for
several different types of flows, and also can improve conditioning of linear systems by increasing the coefficient of the
stiffness matrix, e.g. in the case of BDF2LE, from ν to ν +α. However, as shown in the analysis of [5], this technique
is O(α∆t) accurate, and thus can potentially be a dominant error source in second order timestepping methods if the
usual choice of α = O(h) is made. If one instead takes α = O(∆t), this creates a need for a careful retuning of α

each time the time step size is changed, which could make its use with adaptive time-stepping very difficult.
The purpose of this paper is to introduce and analyze a new stabilization for time-stepping methods of the form

(1.2), that can sufficiently stabilize, but is O(∆t2) accurate, which is optimally accurate for second order timestepping
methods. The design of the stabilization is inspired by the idea of stabilizing ‘curvature’ (un+1 − 2un + un−1),
instead of stabilizing ‘speed’ (un+1 − un), which is done by the stabilization discussed above. Not only is curvature
stabilization more accurate than speed stabilization (with respect to ∆t), but in CFD it does not directly alter important
flow quantities such as drag coefficients, as speed penalization does (see Section 5.3). To our knowledge, the idea of
curvature stabilization is new to CFD, and was first introduced very recently [12,13] as a timestepping method for
two particular classes of ODEs. We note that an interface stabilization term for a Stokes–Darcy system in the recent
paper [14] could also be considered to be in the same spirit, although their interpretation was somewhat different,
and their error analysis led to a similar second order curvature-type term. In the numerical weather and climate
prediction models, the Robert–Asselin time filter and its refinements (the Robert–Asselin–Williams [15], the higher-
order Robert–Asselin time filter [16], etc.) have a similar stabilizing ‘curvature’ effect (see e.g. [17,18]).

The new family of second-order, unconditionally stable, IMEX time-stepping methods we propose are given by:
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∇ pn−1 = fn+θ , (1.4)

∇ · un+1 = 0,
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