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Abstract

To tackle general sub-domain problems in geomechanics, we present an MFEM scheme on curved interfaces based on
NURBS curves and surfaces. The goal is to have a more robust geometrical representation for mortar spaces, which allows
gluing non-conforming interfaces on realistic geometries. The resulting mortar saddle-point problem is decoupled using standard
domain decomposition techniques such as Dirichlet–Neumann, to exploit current parallel machine architectures. Two- and three-
dimensional examples ranging from near-wellbore applications to field level subsidence computations show that the proposed
scheme can handle problems of practical interest.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Background

Hydrocarbon production or the injection of fluids in a reservoir can produce changes in the rock stresses and
in-situ geomechanics, potentially leading to compaction and subsidence with harmful effects in wells, cap-rock,
faults, and the surrounding environment as well. Accurate simulations are required in order to predict these changes
and their impact. In many cases, the flow simulation needs to be coupled to geomechanics, causing a significant
increase in CPU time and memory requirements [1–3]. Poroelasticity is the basic theory to predict the compaction
of a producing hydrocarbon reservoir and the related hazards, including land subsidence and borehole damage [4,5].
In terms of coupling, several approaches are possible, the most common being loose or iterative coupling methods in
which the two problems are solved in sequence [3,6]. The monolithic approach, where all field equations are solved
simultaneously, is regarded as the most suitable one [7,8] for this type of problems [9], but it is quite complicated to
apply whenever the domains for flow and mechanics are not the same.

One possible way to mitigate the CPU burden associated with geomechanics calculations is the use of domain
decomposition (DD) methods. DD entails the splitting of the domain into smaller sub-problems, while enforcing
physically driven matching conditions at the interfaces.
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The Mortar Finite Element Method (MFEM) has been demonstrated to be a powerful technique aimed to formulate
a weak continuity condition at the interface of subdomains in which different meshes, i.e. non-conforming or hybrid,
and/or variational approximations are used. This method is particularly suitable when coupling different physics on
different domains, such as elasticity and poroelasticity, for example, in the context of coupled flow and geomechanics.

In this area, geometrical aspects play an important role, as it can be impractical from the computational standpoint,
to enforce the same mesh for flow and mechanics. Non-conforming discretizations are a highly attractive option
for these problems since they provide considerable computational flexibility [10,11]. Bernardi, Maday and Patera
introduced the MFEM for the Poisson equation [12] in order to formulate a weak continuity condition at the interface
of subdomains in which different variational approximations are used. Relaxing the constraint on the boundaries of
the interfaces, the formulation of Belgacem [13] with Lagrange multipliers is the standard framework in which the
method is understood at present time. One of the key aspects of the method consists of defining appropriate spaces
of Lagrange multipliers for enforcing the gluing constraint [14]. Additional references dealing with mortar methods
can be found elsewhere [15–22]. Many specific applications to linear isotropic elasticity and elliptic problems can
be found in the literature [16,17,14,23,24]. Flemisch et al. developed a dual mortar method for curved interfaces
with applications to 2-D elasticity. Their method improves the performance of dual mortar when applied to curved
surfaces in solid mechanics [16]. The dual mortar methods [22] are efficient due to the simple elimination of the
Lagrange multipliers via the Schur decomposition. Also a comparison between the Nitsche method for linear elasticity
with the mortar method using dual Lagrange multiplier spaces can be found in [25]. Girault et al. presented a
multiscale domain decomposition method for solving linear elasticity where mortars are introduced at the interfaces
as displacement boundary conditions [26]. Convergence of mortar methods applied to linear elasticity is analyzed
in [27], this paper also presents a complete historical development of the mortar method in the context of domain
decomposition. An inexact Dirichlet–Neumann nonconforming domain decomposition method applied to linear
elasticity is presented in [28]. This method employs a mortar formulation based on dual basis functions and a special
multi-grid method. Another recent work investigates several original algebraic techniques of approximation of the
Dirichlet-to-Neumann map to absorbing boundary conditions in linear elasticity [29]. A recent textbook covering
overlapping and non-overlapping domain decomposition schemes is presented in [30]. Implementation details, as
well as the Neumann–Neumann and FETI algorithms, are well covered therein.

In this paper, we propose an extension to the MFEM that considers curved interfaces described by means of
NURBS curves and surfaces. Most of these interfaces are obtained by interpolating a series of discrete points in all
numerical examples included here. Subdomain meshes must honor these curves as constraints, which implies that by
construction all mesh nodal points on the interface actually lie on the curves or surfaces. This condition is important
in order to guarantee that a mortar projector can be computed in a straightforward manner.

The appropriate representation and meshing of the computational domain for the physical problem under study
are necessary premises for a satisfactory simulation. In fact, one of the most demanding computational tasks in a
simulation is defining the geometry because it will impact many aspects of the study such as the grid generation
process [31]. Therefore, special methods must be applied to fit discrete data without sudden changes in curvature. The
approach should be free of inflection points and, at minimum, it must enforce continuity C2 of the fitted curve. In this
work, this goal is achieved by using Bèzier, B-Spline, and NURBS curves and surfaces [32,33].

The paper is structured as follows: Section 2 describes the mathematical model for linear isotropic poroelasticity
while Sections 3 and 4 tackle interpolation with NURBS curves and surfaces respectively. Section 5 is devoted to
MFEM itself, and then Section 6 introduces decoupling techniques using domain decomposition methods. Section 7
briefly discusses mortar mappings, which are necessary to incorporate MFEM to existing parallel codes. Section 8
includes numerical examples in geomechanics, and the three last sections present concluding remarks, future work
and acknowledgments respectively.

2. Mathematical model

This section discusses the governing equations for linear homogeneous isotropic poro-elasticity and their finite
element formulation. We omit details for the sake of brevity, a more detailed treatment can be found in [34,10,35,36,
1,6]. We consider a bounded domain Ω ⊂ Rn , n = 2, 3 and its boundary is Γ = ∂Ω . Let Th be a non-degenerate,
quasi-uniform conforming partition of Ω composed of triangles or quadrilaterals for two-dimensional problems, and
hexahedra or tetrahedra for three-dimensional problems. It can be shown that [2], for deformable porous media, the
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