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Abstract

This paper is a revisit of the work [Ladevèze and Pelle, Int. J. Numer. Methods Engrg. 28 (1989)] where the goal here is to
acquire guaranteed, accurate and computable bounds of eigenfrequencies through post-processing of conventional finite element
results. To this end, a new theoretical quotient is introduced and thereafter, a practical way to deal with the new quotient is developed
where the constitutive relation error estimation featured with guaranteed bounding property acts as a key role. Academic numerical
examples are performed to check the accuracy of the bounds.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Eigenfrequencies are inherent features of engineering structures. They are of critical importance to dynamic
responses of the structures, in view of the spectral analysis; therefore, they have received sustained concern from
engineering design. As an effective tool to carry out the eigenfrequency analysis, the finite element method (FEM)
has become more and more essential for practitioners. Commonly, the FEM finds approximate eigenfrequencies using
a finite dimensional subspace of the infinite dimensional space associated with the initial mathematical eigenvalue
problem. Thus, error is often inevitably seen in the approximate eigenfrequencies and this may be annoying for
practical design.

Devoted to estimation of the error in eigenfrequency analysis, much research work has been done and consequently,
several types of error estimators have been developed. The first type contains the recovery-based error estimators.
Representative work is listed as follows: Bausys [1] proposed an element patch recovery technique to acquire
the recovered displacement field and thereof, recovered eigenfrequencies. Based on this technique, accuracy in
eigenfrequencies was further improved by Wiberg et al. [2] through a global–local updating strategy. Other than
recovery of the displacements, Naga et al. [3] used a patch-based gradient recovery technique to obtain enhanced
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eigenvalues. The second type consists of the nonlinear residual-based error estimators, which were mainly established
by Oden et al. [4] and Walsh et al. [5]. Therein, the eigenvalue problem is treated as a nonlinear problem and the
generic residual-based error estimation procedure for nonlinear problems is adopted. Using the nonlinear residuals
arising from eigenvalue problems, Maday et al. [6] further acquired asymptotic bounds of eigenvalues by an
augmented Lagrangian formulation. Nevertheless, there are several common features of the above two types of error
estimators: (1) none can provide guaranteed bounds of eigenfrequencies; (2) information on both eigenfrequencies
and eigenmodes is required to perform error estimation; (3) eigenfrequencies are estimated individually, that is to say,
errors in different eigenfrequencies should be evaluated through different procedures.

Alternatively, Ladevèze and Pelle proposed an approach with two variants, which is categorized into the third
type in this work, for the computation of guaranteed estimates of eigenfrequencies [7–9] and the use of these
estimates for mesh adaptivity [10,9]. There are three attractive properties for the approach: (1) guaranteed bounds of
eigenfrequencies are obtainable; (2) information on eigenmodes is not involved; (3) bounds are obtained collectively,
that is to say, bounds of all eigenfrequencies rely on a single constant which depends only on the mesh and therefore,
can be computed in parallel or offline. The first variant of the Ladevèze–Pelle approach detailed in [8] yields upon the
static quotient. This is very efficient but needs to use equilibrium finite elements; consequently, such an approach
is not applicable today for practical engineering purposes and with conventional finite element (FE) codes. The
second variant is based on Rayleigh (kinematic) quotient and then, compatible with conventional FE approaches.
However, to get guaranteed bounds, an additional problem should be introduced, which cannot be solved with
conventional FEM. Thus, in this paper, the second variant is revisited. In order to make this approach suitable for
engineering computations, a practical way to solve the additional problem and thereof, compute guaranteed bounds
of eigenfrequencies is developed.

The remainder of this paper is structured as follows: Section 2 gives a simple description of the free vibration
problem in linear elasticity. The process to acquire guaranteed lower bounds of eigenfrequencies is framed in
Section 3. There are three parts in the process: firstly, the second variant of the Ladevèze–Pelle approach is revisited
to derive guaranteed lower bounds of eigenfrequencies by introducing a mesh-dependent constant kc; secondly, kc is
strictly evaluated by further introducing the local constant βh and the global constant αh ; thirdly, a practical way to
compute the local constant βh is presented. Section 4 focuses on the evaluation of the global constant αh , for which
the constitutive relation error (CRE) estimation [11], featured with computable and guaranteed upper bound of the
FE discretization error, is applied. Numerical examples are conducted in Section 5 and final conclusions are drawn in
Section 6.

2. Model problem

Consider an elastic structure defined in a d-dimensional open domain Ω with Lipschitz continuous boundary ∂Ω .
Usually, the boundary is divided into two disjoint parts—Dirichlet boundary ∂DΩ and Neumann boundary ∂N Ω—
such that ∂DΩ ≠ ∅ and ∂DΩ


∂N Ω = ∂Ω . Throughout this paper, let u denote the displacement field, f the body

forces, σ the symmetric Cauchy stress tensor and ε the strain tensor under small displacements, i.e. ε(u) = ∇
symu.

Material parameters consist of the mass density ρ and the elastic Hooke’s operator H. Then, governing equations for
free vibrations of the structure are stated as follows,

λρu + ∇ · σ = 0, in Ω ,

σ = Hε(u),

σ · n = 0, on ∂N Ω ,

u = 0, on ∂DΩ

(1)

where (λ, u) is the eigenpair; the eigenfrequency is obtained as
√

λ/2π .
To proceed further, some notations are introduced. Let U = {u ∈ [H1(Ω)]d

: u|∂DΩ = 0} denote the space of
kinematically admissible displacements, F = [L2(Ω)]d represent the space of body forces and S = [L2(Ω)]d(d+1)/2

be the space of symmetric stress tensors. Then, some energy inner products are defined: ⟨·, ·⟩u : U × U → R is the
strain energy inner product with respect to displacements, ⟨·, ·⟩σ : S × S → R is the strain energy inner product with
respect to stresses, and (·, ·) : F × F → R is the kinetic energy inner product with respect to body forces; they are of
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