
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 302 (2016) 281–292
www.elsevier.com/locate/cma

Sparse matrix factorization in the implicit finite element method on
petascale architecture

Seid Korica,b,∗, Anshul Guptac

a National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, USA
b Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, USA

c Mathematical Sciences, IBM T.J. Watson Research Center, USA

Received 2 May 2015; received in revised form 12 January 2016; accepted 15 January 2016
Available online 27 January 2016

Abstract

The performance of the massively parallel direct multifrontal solver Watson Sparse Matrix Package (WSMP) for solving large
sparse systems of linear equations arising in implicit finite element method on unstructured (free) meshes in solid mechanics
was evaluated on one of the most powerful supercomputers currently available to the open science community—the sustained
petascale high performance computing system of Blue Waters. We have performed full-scale benchmarking tests up to 65,536
cores using assembled global stiffness matrices and load vectors ranging from 11 to 40 million unknowns extracted from “real-
world” commercial implicit finite element analysis (FEA) applications. The results show that a direct multifrontal factorization
method with a hybrid parallel implementation in WSMP performs exceedingly well on a petascale high-performance computing
(HPC) system, and delivers superior factorization time and parallel scalability, thus opening the door for the high fidelity modeling
of complex industrial structures and assemblies in real scale.
c⃝ 2016 Elsevier B.V. All rights reserved.

Keywords: Sparse linear solvers; Factorization; Petascale high performance computing; Finite element method; Unstructured mesh

1. Introduction

1.1. High performance computing in engineering

Across a range of engineering fields, the use of simulation and computational models is pervasive for designing
engineered systems. High Performance Computing (HPC) systems play an essential role in simulations and modeling.
Researchers and manufacturing teams depend on HPC to create safe cars and energy-efficient aircraft as well as
effective communication systems and efficient supply chain models. Availability of advanced HPC technologies
has also fundamentally altered the investigative paradigm in the field of biomechanics. While emerging peta-scale

∗ Correspondence to: National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana,
IL, 61801, USA.

E-mail address: koric@illinois.edu (S. Koric).

http://dx.doi.org/10.1016/j.cma.2016.01.011
0045-7825/ c⃝ 2016 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2016.01.011&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2016.01.011
http://www.elsevier.com/locate/cma
mailto:koric@illinois.edu
http://dx.doi.org/10.1016/j.cma.2016.01.011


282 S. Koric, A. Gupta / Comput. Methods Appl. Mech. Engrg. 302 (2016) 281–292

computing is already a strategic enabler of large-scale simulations in many scientific areas such as astronomy, biology
and chemistry [1–3], paradoxically for many engineers and researchers, the existing hardware and software often
cannot be used to solve their problems. On one hand, current HPC systems in production often lack the computational
power, network bandwidth and data storage needed for solving tomorrow’s real-world engineering challenges. On the
other hand, even the most powerful hardware will fail to deliver on its full potential unless matched with appropriate
algorithms designed specifically for such environments. Sparse matrix factorization, a critical algorithm in many
science, engineering, and optimization applications, has traditionally had difficulty tuning to and leveraging the ever
increasing computational power of HPC [4].

The main objective of this work is to demonstrate that the multifrontal sparse factorization algorithm with hybrid
parallelization, such as the one in the WSMP solver code, can scale efficiently in today’s large-scale supercomputers,
opening a new horizon of high fidelity and robust finite element simulations in the engineering academic and industrial
realms.

1.2. Sparse linear solvers in implicit finite element methods, background and previous work

Solving linear system of equations:

Ax = b (1)

is responsible for 70%–80% of the total computational time in many problems in computational science and
engineering. When discretizing continuous solid mechanics problems with implicit finite element method, the
associated matrix A is sparse, symmetric and often positive definite. A single solution of Eq. (1) suffices for linear
problems. For nonlinear problems, however, within each quasi-static time step, a system of nonlinear equations is
linearized and solved with a Newton–Raphson (NR) iteration scheme [5,6], which requires several linear solver
solutions of global equilibrium iterations (subscript i) as follows:

K t+1t
i−1

 
1ut+1t

i−1


=


Rt+1t

i−1


. (2)

Here

1ut+1t

i−1


is the incremental change to the solution vector (displacements in mechanical problems), and

Rt+1t
i−1


is the residual error vector. A linear solver is used to solve Eq. (2) for


1ut+1t

i−1


, which is used to update

the solution vector in Eq. (3), until convergence is achieved everywhere at time t + 1t (i.e., when the update vector is
sufficiently small).

ut+1t
i


=


ut+1t

i−1


+


1ut+1t

i−1


. (3)

The tangent stiffness matrix

K t+1t


is defined in Eq. (5) from the consistent tangent operator, also known as the

material Jacobian, [J ], which is defined in Eq. (4) for mechanical problems, taking 1ε̂t+1t as a guessed mechanical
strain increment, based on the current best displacement increment.

J =
∂1σt+1t

∂1ε̂t+1t (4)


K t+1t 

=


V

[B] T [J ] [B] dV . (5)

Here [B] = ∂ [N ] /∂x contains the spatial derivatives of the element shape functions [N ].
There has been considerable interest in the development of numerical algorithms for solving large sparse linear

systems of equations and their efficient parallel implementation on HPC systems for more than three decades. The
algorithms may be grouped into two broad categories: direct methods and iterative methods.

Iterative method algorithms repeatedly apply a sequence of operations at each step attempting to improve upon
its current approximation to a solution. Krylov subspace methods are an important class of iterative methods. This
class includes the Conjugate Gradient (CG) method [7,8] and its variants, which are robust for Symmetric Positive
Definite (SPD) matrices. In solving the large systems in finite element method, combining a Krylov subspace method



Download	English	Version:

https://daneshyari.com/en/article/497624

Download	Persian	Version:

https://daneshyari.com/article/497624

Daneshyari.com

https://daneshyari.com/en/article/497624
https://daneshyari.com/article/497624
https://daneshyari.com/

