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Abstract

Following the recent work of Bonet et al. (2015), this paper postulates a new convex multi-variable variational framework for
the analysis of Electro Active Polymers (EAPs) in the context of reversible nonlinear electro-elasticity. This extends the concept
of polyconvexity (Ball, 1976) to strain energies which depend on non-strain based variables introducing other physical measures
such as the electric displacement. Six key novelties are incorporated in this work. First, a new definition of the electro-mechanical
internal energy is introduced expressed as a convex multi-variable function of a new extended set of electromechanical arguments.
Crucially, this new definition of the internal energy enables the most accepted constitutive inequality, namely ellipticity, to be
extended to the entire range of deformations and electric fields and, in addition, to incorporate the electro-mechanical energy of the
vacuum, and hence that for ideal dielectric elastomers, as a degenerate case. Second, a new extended set of variables, work conjugate
to those characterising the new definition of multi-variable convexity, is introduced in this paper. Third, both new sets of variables
enable the definition of novel extended Hu–Washizu type of mixed variational principles which are presented in this paper for the
first time in the context of nonlinear electro-elasticity. Fourth, some simple strategies to create appropriate convex multi-variable
energy functionals (in terms of convex multi-variable invariants) by incorporating minor modifications to a priori non-convex
multi-variable functionals are also presented. Fifth, a tensor cross product operation (de Boer, 1982) used in Bonet et al. (2015)
to facilitate the algebra associated with the adjoint of the deformation gradient tensor is incorporated in the proposed variational
electro-mechanical framework, leading to insightful representations of otherwise complex algebraic expressions. Finally, under a
characteristic experimental setup in dielectric elastomers, the behaviour of a convex multi-variable constitutive model capturing
some intrinsic nonlinear effects such as electrostriction, is numerically studied.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The actuator and harvesting capabilities of the early piezoelectric crystals and ceramics were not very long ago
eclipsed by those of Electro Active Polymers (EAPs). This heterogeneous group can be divided into two further
subgroups, namely Electronic Electro Active Polymers (EEAPs) and Ionic Electro Active Polymers (IEAPs) [1].
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Within the first subgroup, Dielectric Elastomers (DEs) and electrostrictive relaxor ferroelectric polymers or simply
Piezoelectric Polymers (PPs), have become increasingly relevant. The second subgroup includes ionic gels, Ionic
Polymer Metal Composites (IPMCs) and carbon nanotubes.

The present manuscript focuses mainly on DEs and PPs. The elastomer VHB 4910 and the highly popular
PolyVinylidene DiFlouride (PVDF) are the most representative examples of both groups, respectively. However, DEs
are becoming specially attractive due to their outstanding actuation properties [2–5]. For instance, a voltage induced
area expansion of 1980% on a DE membrane film has been recently reported by Li et al. [6]. In this specific case, the
electromechanical instability is harnessed as a means for obtaining these electrically induced massive deformations
with potential applications in soft robots, adaptive optics, balloon catheters and Braille displays [6], among others.
Moreover, these materials have been successfully applied as generators to harvest energy from renewable sources as
human movements and ocean waves [7].

With the emergence of these highly deformable materials, a variational framework for nonlinear electro-elasticity
was developed by different authors [8–18]. Within that framework, as customary in nonlinear continuum mechanics,
the constitutive behaviour of the material is encoded in an energy functional which depends typically upon appropriate
strain measures, a Lagrangian electric variable and, if dissipative effects are considered, upon an electromechanical
internal variable.

Several authors have proposed alternative representations of the energy functional in terms of electromechanical
invariants [9–14]. However, some restrictions need to be imposed on the invariant representation if physically
admissible behaviours are expected to occur. Bustamante and Merodio [19] considered classical constitutive
inequalities, namely: the Baker–Ericksen inequality, the pressure–compression inequality, the traction–extension
inequality and the ordered forces inequality. The objective was to study under what conditions a specific invariant
representation of the energy functional for magneto-sensitive elastomers would violate the previous inequalities for
very specific deformation scenarios.

The most well accepted constitutive inequality is ellipticity, also known as the Legendre–Hadamard condition
[20,21]. This inequality has important physical implications. In particular, it guarantees positive definiteness of the
generalised electromechanical acoustic tensor [22] and hence, existence of real wave speeds in the material in the
vicinity of an equilibrium configuration. Several authors have also studied under what conditions positive definiteness
of the generalised electromechanical acoustic tensor is compromised for a specific invariant representation of the
energy functional [22–24]. Recently, a material stability criterion based on an incremental quasi-convexity condition
of the energy functional has been introduced by Miehe et al. [25].

In nonlinear elasticity, polyconvexity [20,21,26–44] of the (strain) energy functional, namely, convexity with re-
spect to the components of the deformation gradient tensor F, the components of its adjoint or cofactor H and its de-
terminant J , automatically implies the ellipticity condition. Following the work of Rogers [45], the present manuscript
presents an extension of the concept of polyconvexity to the field of nonlinear electro-elasticity based on a new convex
multi-variable definition of the energy functional. Notice that the focus of this paper is on material stability and not
on the existence of minimisers. The latter would also require the study of the sequentially weak lower semicontinuity
and the coercivity of the energy functional.

A new electro-kinematic variable set is introduced including the deformation gradient F, its adjoint H, its
determinant J , the Lagrangian electric displacement field D0 and an additional spatial or Eulerian vector d computed
as the product between the deformation gradient tensor and the Lagrangian electric displacement field. The resulting
energy functional is called the internal energy and as presented in Ref. [46], convexity of the internal energy functional
with respect to the elements of the new extended set permits an extension of the concept of ellipticity [21], not only
to the entire range of deformations but to any applied electric field as well.

The extended set of variables V = {F, H, J, D0, d} enables the introduction of another new set of work conjugate
variables ΣV = {ΣF,ΣH,ΣJ ,ΣD0 ,Σ d} [47]. Convexity of the internal energy with respect to V guarantees that
the relationship between both sets of variables is one to one and invertible. In addition, convexity of the internal
energy enables three additional energy functionals to be defined (at least implicitly) by making appropriate use of the
Legendre transform.1

1 Two partial Legendre transforms can be obtained by fixing either purely mechanical or purely electrical variables of the extended set. A total
Legendre transform of the internal energy would render the third energy functional in terms of the elements of the extended set of work conjugate
variables.
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