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Abstract

We present and analyze a pollution-free Petrov–Galerkin multiscale finite element method for the Helmholtz problem with large
wave number κ as a variant of Peterseim (2014). We use standard continuous Q1 finite elements at a coarse discretization scale
H as trial functions, whereas the test functions are computed as the solutions of local problems at a finer scale h. The diameter
of the support of the test functions behaves like m H for some oversampling parameter m. Provided m is of the order of log(κ)

and h is sufficiently small, the resulting method is stable and quasi-optimal in the regime where H is proportional to κ−1. In
homogeneous (or more general periodic) media, the fine scale test functions depend only on local mesh-configurations. Therefore,
the seemingly high cost for the computation of the test functions can be drastically reduced on structured meshes. We present
numerical experiments in two and three space dimensions.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Standard finite element methods (FEMs) for acoustic wave propagation are well known to exhibit the so-called
pollution effect [1], which means that the stability and convergence of the scheme require a much smaller mesh-size
than needed for a meaningful approximation of the wave by finite element functions. For a highly oscillatory wave
at wave number κ , the typical requirement for a reasonable representation reads κ H . 1 for the mesh-size H , that
is some fixed number of elements per wave-length. The standard Galerkin FEM typically requires at least κα H . 1
where α > 1 depends on the method and the stability and regularity properties of the continuous problem. There have
been various attempts to reduce or avoid the pollution effect, e.g., discontinuous Galerkin methods [2–5], high-order
finite elements [6,7], discontinuous Petrov–Galerkin methods [8,9], or the continuous interior penalty method [10]
among many others. A good historical overview is provided in [8].
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The work [11] suggested a multiscale Petrov–Galerkin method for the Helmholtz equation where standard finite
element trial and test functions are modified by a local subscale correction in the spirit of numerical homogeniza-
tion [12]. In the numerical experiments of [11], a variant of that method appeared attractive where only the test
functions are modified while standard finite element functions are used as trial functions. In this paper, we analyze
that method and reformulate it as a stabilized Q1 method in the spirit of the variational multiscale method [13–17].
The method employs standard Q1 finite element trial functions on a grid GH with mesh-size H . The test functions are
the solutions of local problems with respect to a grid Gh at a finer scale h which is chosen fine enough to allow for
stability of the standard Galerkin FEM over Gh . The diameter of the support of the test functions is proportional to
m H for the oversampling parameter m. Under the condition that m is logarithmically coupled with the wave number
κ through m ≈ log(κ), we prove that the method is pollution-free, i.e., the resolution condition κ H . 1 is sufficient
for stability and quasi-optimality under fairly general assumptions on the stability of the continuous problem. The per-
formance of the method is illustrated in the convergence history of Fig. 1. More detailed descriptions on the numerical
experiments will be given in Section 5. As the test functions only depend on local mesh-configurations, on structured
meshes the number of test functions to be actually computed is much smaller than the overall number of trial and test
functions on the coarse scale. In many cases, the computational cost is then dominated by the coarse solve and the
overhead compared with a standard FEM on the same coarse mesh remains proportional to md

≈ log(κ)d . Even if no
structure of the mesh can be exploited to reduce the number of patch problems, the method may still be attractive if
the problem has to be solved many times with different data (same κ though) in the context of inverse problems or
parameter identification problems.

The paper is structured as follows. Section 2 states the Helmholtz problem and recalls some important results.
The definition of the new Petrov–Galerkin method follows in Section 3. Stability and error analysis are carried out in
Section 4. Section 5 is devoted to numerical experiments.

Standard notation on complex-valued Lebesgue and Sobolev spaces applies throughout this paper. The bar indicates
complex conjugation and i is the imaginary unit. The L2 inner product is denoted by (v, w)L2(Ω) :=


Ω vw̄ dx . The

Sobolev space of complex-valued L p functions over a domain ω whose generalized derivatives up to order k belong
to L p is denoted by W k,p(ω; C). The notation A . B abbreviates A ≤ C B for some constant C that is independent
of the mesh-size, the wave number κ , and all further parameters in the method like the oversampling parameter m or
the fine-scale mesh-size h; A ≈ B abbreviates A . B . A.

2. The Helmholtz problem

Let Ω ⊆ Rd , for d ∈ {1, 2, 3}, be an open bounded domain with polyhedral Lipschitz boundary which is
decomposed into disjoint parts ∂Ω = ΓD ∪ ΓR with ΓD closed. The classical Helmholtz equation then reads

−∆u − κ2u = f in Ω ,

u = u D on ΓD,

iκu − ∇u · ν = g on ΓR

(2.1)

for the outer unit normal ν of Ω and the real parameter κ > 0. For the sake of a simple exposition we assume
u D = 0. Either of the parts ΓD or ΓR is allowed to be the empty set. In scattering problems, the Dirichlet boundary
ΓD typically refers to the boundary of a bounded sound-soft object whereas the Robin boundary ΓR arises from
artificially truncating the full space Rd to the bounded domain Ω [18]. The variational formulation of (2.1) employs
the space

V := W 1,2
D (Ω; C) := {v ∈ W 1,2(Ω; C) : v|ΓD = 0}.

For any subset ω ⊆ Ω we define the norm

∥v∥V,ω :=


κ2∥v∥

2
L2(ω)

+ ∥∇v∥
2
L2(ω)

for any v ∈ V

and denote ∥v∥V := ∥v∥V,Ω . Define on V the following sesquilinear form

a(v, w) := (∇v, ∇w)L2(Ω) − κ2(v, w)L2(Ω) − iκ(v, w)L2(ΓR).
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