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Highlights

• Conservative non-linear fourth-order time integration scheme.
• Formulated by state-space variables at time-step end points.
• Momentum form followed by integration by parts.
• General internal forces by fourth-order secant representation.

Abstract

An energy conserving time integration algorithm with fourth-order accuracy is developed for dynamic systems with nonlinear
stiffness. The discrete formulation is derived by integrating the differential state-space equations of motion over the integration
time increment, and then evaluating the resulting time integrals of the inertia and stiffness terms via integration by parts. This
process introduces the time derivatives of the state space variables, and these are then substituted from the original state-space
differential equations. The resulting discrete form of the state-space equations is a direct fourth-order accurate representation of
the original differential equations. This fourth-order form is energy conserving for systems with force potential in the form of
a quartic polynomial in the displacement components. Energy conservation for a force potential of general form is obtained by
addition of a higher order secant-type correction term. The formulation leads to a consistent representation of the motion within
a time increment corresponding to cubic Hermite interpolation in time. This in turn leads to excellent phase representation with
only a small fourth-order error, permitting integration of oscillatory systems with only a few integration points per period. Three
numerical examples demonstrate the high accuracy of the algorithm.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The numerical calculation of the response of dynamic systems is one of the central problems in computational
mechanics and physics. In the last decades there has been a considerable interest in the development of time integration
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methods that conserve invariants of the problem like energy and momentum. An early contribution is the series of
papers by LaBudde and Greenspan [1,2], who developed discrete time integration methods for particle dynamics
based on energy and momentum conservation. This type of approach to the numerical calculation of nonlinear
dynamic response was further developed by Simo et al. [3–5] covering rigid-body motion, elastodynamics and general
Hamiltonian systems. An essential point in these methods is the identification of a particular representation of the
internal forces such that exact conservation properties are satisfied. In the context of continuum mechanics various
forms of stress averages have recently been discussed by Romero [6].

An important extension of the range of conservative time integration methods was attained by the introduction of
the so-called finite derivative introduced by Gonzalez [7,8], and further developed under the name of the ‘discrete
gradient’ by McLachlan et al. [9]. The basic idea is to replace the original expression of the internal force by an
augmented form including a correction in terms of the increment of the quantity to be conserved. This concept
bears similarity with the notion of a secant representation of derivatives used in quasi Newton methods, see e.g. [10]
Chapter 9. The concept was rapidly adopted within computational mechanics, see e.g. [11–13], and the finite derivative
is now considered a standard concept in time integration of nonlinear response, [14]. Extensions have been made to the
original second-order representation, e.g. by improved evaluation of the integral via Hermite type integration with the
velocities as the derivatives at the time integration points [15]. A systematic extension of second-order algorithms to
fourth-order accuracy has been proposed independently by de Frutos and Sanz-Serna [16], and Tarnow and Simo [17].
The idea is to combine three steps of the second-order algorithm to cancel the leading error terms and increasing the
accuracy to fourth order for non-dissipative problems, where time can be reversed. By this approach the fourth-order
algorithm inherits properties like energy conservation from the underlying second-order algorithm.

Most direct time integration schemes with conservation properties are of second-order accuracy with respect to
the representation of the response. Essentially, the conservative algorithms correspond to an integrated form of the
original state-space differential equations, and the order of accuracy depends on the order to which the corresponding
integrals are represented in the discrete algorithm. It was demonstrated by Krenk [18] that a fourth-order algorithm
could be obtained for linear dynamic systems by evaluating the integrals over the time step via integration by parts.
This procedure introduces the time derivatives of the state-space variables under the integral sign, and these time
derivatives can then be expressed via the original state-space equations. The resulting integrals contain time-weighted
forms of the state-space variables and these can be evaluated to fourth order by a Taylor series expansion about the
center of the time step. The time-weighted integrals bear a certain similarity to the format of Galerkin based time
integration methods, see e.g. the higher order Galerkin based schemes of Gross et al. [19], and it has recently been
demonstrated by Depouhon et al. [20] that within a linear framework a discontinuous Galerkin procedure presented
by Bottasso and Trainelli [21] can be reduced by elimination of the discontinuities to the direct state-space format
from [18]. In the present paper the direct fourth-order state-space format is extended to nonlinear systems, and the
terms of the algorithm are expressed entirely by the forces and the stiffness matrix at the end points of each time step.
This results in a fourth-order accurate time integration algorithm that is energy conserving, if the energy potential is
of fourth degree or less in the displacement variables. The algorithm is easily extended to energy conserving form also
for more general internal energy potentials by introducing a secant type correction term of fifth order, thereby retaining
the fourth order accuracy of the response history. Examples demonstrate very high accuracy of the algorithm, and a
closer look at the discrete equations of the algorithm reveals that it incorporates a full cubic Hermite representation
of the response within each integration step, whereas similar second order algorithms typically are based on a central
difference representation of the mean velocity, corresponding to only a quadratic representation.

2. Basic equations

A standard form of the equations of motion of dynamic systems with non-linear internal forces described by a finite
number of degrees of freedom u is

Mü + Cu̇ + g(u) = f(t). (1)

A dot denotes time differentiation, while M and C are the mass matrix and damping matrix, respectively, here assumed
to be constant. Alternative, more general forms, in which u contains the generalized coordinates and the inertial terms
depend on both the generalized displacements and the generalized velocities, can be formulated by use of Hamilton’s
principle or by the Lagrange equations with the momentum vector p as an auxiliary variable, see e.g. [22]. However,
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