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Abstract

The performance of the residual-based extended stochastic gradient (ESG) algorithms for

identifying CARMA models with disturbances is analyzed under weaker conditions on statistical

properties of the noise. The paper derives the conditions under which the parameter estimation errors

converge to zero. Three examples are given to show the advantages of the proposed algorithm.
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1. Introduction

The stochastic gradient (SG) or stochastic approximation and least squares (LS)
algorithms are two important methods for system identification and parameter estimation.
Compared with the least-squares method [1,2], the gradient search method has small
computational load and wide applications in many areas, including control and
optimization [3–7], function approximation suited to reinforcement learning [8], and
option pricing based on stochastic approximation techniques [9].
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A great deal of work has been published on convergence analysis of SG [10–14] and LS
identification methods [15–17]. In this literature, an auxiliary model-based SG algorithm
for dual-rate systems [18], a polynomial transform-based SG algorithm for dual-rate
systems [19], a multi-innovation SG algorithm for linear regression systems [20,21] and a
hierarchical SG algorithm for multivariable systems [22] were presented. Recently, Ding,
Shi and Chen proposed the extended SG algorithm for Hammerstein nonlinear ARMAX
systems based on the over-parameterization method [23], and Wang and Ding studied the
extended SG algorithm for Hammerstein–Wiener models [1].

Exploring the properties of the SG algorithm under weaker conditions is still open [14]
and also the goal in this paper. This paper studies the identification problem for the
CARMA models with a deterministic disturbance and presents a residual-based extended
stochastic gradient (ESG) algorithms and analyzes the performance of the proposed ESG
algorithm by assuming that the process variables have non-zero mean values and time-
varying variances. The proposed algorithm has less computational load than the least-
squares algorithm and can improve the accuracy of the parameter estimates by introducing
the forgetting factor.

This paper is organized as follows. Section 2 discusses the problem formulation.
Section 3 analyzes the performance of the extended SG algorithm. Section 4 provides an
illustrative example. Finally, concluding remarks are given in Section 5.

2. The system description

Consider the discrete-time system described by a CARMA model with a disturbance [14],

AðzÞy0ðtÞ ¼ BðzÞu0ðtÞ þDðzÞv0ðtÞ þ f 0; ð1Þ

where {y0(t)} and {u0(t)} are the system input and output sequences with mean values
E[y0(t)]=my and E[u0(t)]=mu, {v

0(t)} is a random noise sequence with mean value E[v0(t)]=mv

and time-varying variance s2(t), f0 is a deterministic disturbance, z�1 represents the
unit backward shift operator: z�1y(t)=y(t–1), and A(z), B(z) and D(z) are polynomials
in z�1 with

AðzÞ ¼ 1þ a1z
�1 þ a2z

�2 þ � � � þ ana
z�na ;

BðzÞ ¼ b1z
�1 þ b2z

�2 þ � � � þ bnbz�nb ;

DðzÞ ¼ 1þ d1z
�1 þ d2z

�2 þ � � � þ dnd
z�nd :

Let

yðtÞ :¼ y0ðtÞ � my;

uðtÞ :¼ u0ðtÞ � mu;
vðtÞ :¼ v0ðtÞ � mv;
f :¼ f 0 þ Bð1Þmu þDð1Þmv ¼ Að1Þmy: ð2Þ

Then y(t), u(t) and v(t) have zero mean values. Eq. (1) can be rewritten as [14]

AðzÞyðtÞ ¼ BðzÞuðtÞ þDðzÞvðtÞ þ f : ð3Þ

Without loss of generality, assume that y(t)=0, u(t)=0 and v(t)=0 for tr0.
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