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Abstract

In this paper, the Bagley–Torvik equation, which has an important role in fractional calculus, is

solved by generalizing the Taylor collocation method. The proposed method has a new algorithm for

solving fractional differential equations. This new method has many advantages over variety of

numerical approximations for solving fractional differential equations. To assess the effectiveness

and preciseness of the method, results are compared with other numerical approaches. Since the

Bagley–Torvik equation represents a general form of the fractional problems, its solution can give

many ideas about the solution of similar problems in fractional differential equations.
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1. Introduction

In fractional calculus, the Bagley–Torvik equation

Ay00ðxÞ þ Byð3=2ÞðxÞ þ CyðxÞ ¼ f ðxÞ ð1:1Þ

(Aa0 and B, CAR) has an outstanding role for being a model of motion of a rigid plate
immersed in a Newtonian fluid. This equation is first proposed by the authors of [1], and
then many authors have analyzed this equation by different approximate numerical
methods. Podlubny [2] has also investigated the solution of this problem and proposed a
numerical method in his book. He also gave the analytical solution of the Bagley–Torvik
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equation with homogeneous initial conditions by using Green’s function. But, in practice,
these equations cannot be evaluated easily for different functions f(x). Trinks and Ruge [3]
modeled the Bagley–Torvik equation again and compared the numerical solution by using
an alternative time discretization scheme with the Podlubny’s numerical solution.
Leszczynski and Ciesielski [4] proposed a numerical solution of Bagley–Torvik equation
considering the equation as a system of ordinary differential equations using the Abel
integral equations. Edwards et al. [5] solved linear multiterm fractional differential
equations as a system. So, they solved the Bagley–Torvik equation by using the reduction
of the problem to a system. In a similar manner El-Sayed et al. [6] solved the
Bagley–Torvik equation of arbitrary order by considering the equation as a system.
Another method proposed for the solution of the fractional differential equations is
Adomian decomposition method (ADM). Ray and Bera [7] applied Adomian decomposi-
tion method for the solution of Bagley–Torvik equation and obtain the same solution as
the Podlubny’s solution by Green’s function. In this problem, f(x) is considered as
Heaviside function. In a similar study, Hu et al. [8] got the solution of the Bagley–Torvik
equation by using Green’s function. Daftardar-Gejji and Jafari [9] discussed the solution of
the Bagley–Torvik equation as a system of differential equations by the Adomian method.
Arikoglu and Ozkol [10] applied differential transform method (DTM) to Bagley–Torvik
equation for specified initial conditions and a certain function f(x). C- enesiz [11] proposed
differential transform method using the grid points for the solution of the Bagley–Torvik
equation. He also showed the agreement of his solution with Podlubny’s solution.

In this paper, we present a new generalization of the Taylor collocation method that will
extend the application of the method to differential equations of fractional order. The new
technique can be called as generalized Taylor collocation method (GTCM) and is based on
the Taylor collocation method [25,26], generalized Taylor’s formula [30] and Caputo
fractional derivative [27–29]. Using the collocation points, the GTCM transforms the given
fractional differential equation and initial conditions to matrix equation including unknown
generalized Taylor coefficients. By means of the matrix equation and the computer package
program Maple 11, the generalized Taylor coefficients can be computed.

2. Basic definitions

In this section we present some basic definitions and important properties of fractional
calculus [12–20].

Definition 1. A real function f(x), xo0, is said to be in the space Cm, mAR, if there exists a
real number pom, such that f ðxÞ ¼ xpf1ðxÞ, where f1ðxÞ 2 Cð0;1Þ, and it is said to be in
the space Cn

m if f ðnÞ 2 Cm, nAN.

Definition 2. The fractional integral operator aJa
x (Riemann–Liouville operator) of order

aZ0 of a function f 2 Cm, mZ�1, is defined by

aJa
xf ðxÞ ¼

1

GðaÞ

Z x

a

ðx� uÞa�1f ðuÞ du; xZa

aJ0
xf ðxÞ ¼ f ðxÞ

ð2:1Þ
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