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Abstract

We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three
dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by
B-splines or NURBS, as for example the sphere, and we spatially discretize the PDEs by means of NURBS-based Isogeometric
Analysis in the framework of the standard Galerkin method. We numerically solve benchmark Laplace–Beltrami problems of the
fourth and sixth order, as well as the corresponding eigenvalue problems, with the goal of analyzing the role of the continuity of the
NURBS basis functions on closed surfaces. In this respect, we show that the use of globally high order continuous basis functions,
as allowed by the construction of periodic NURBS, leads to the efficient solution of the high order PDEs. Finally, we consider the
numerical solution of high order phase field problems on closed surfaces, namely the Cahn–Hilliard and crystal equations.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In several mathematical models we face Partial Differential Equations (PDEs) defined on lower dimensional
manifolds [1]. Examples can be found in Fluid Dynamics, Mechanics, Biology, Electromagnetism, and image
processing [2–5], where three dimensional problems are represented on surfaces, for instance in the case of thin
geometries, modeled as membranes, plates, or shells [6], depending on the structure of the original domain. This leads
to defining surface PDEs which often involve high order differential operators [2,7].

Usually, the numerical solution of surface PDEs is tackled using the Finite Element Method (FEM) [8]. In this case,
a challenge for obtaining an accurate numerical approximation is the construction of a suitable computational mesh,
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which still represents an approximation of the original surface. Indeed, generating a mesh of “good quality” is nec-
essary not only to accurately represent the surface, but also to evaluate the differential operators which are associated
to the geometrical properties of the manifold. In particular, this involves the evaluation of several geometrical quan-
tities, as the normal and curvature of the surface. In this context, accurately representing such geometric information
is important also for the approximation of the PDEs. Besides being time consuming, the process of mesh generation
may require a large number of Degrees Of Freedom (DOFs) for the PDE approximation. In the FEM context, dif-
ferent approaches have been introduced aiming at controlling the approximation error induced by the discretization
of the geometry; examples are the surface FEM [9,10], or geometrically consistent Adaptive FEM [11–13]. Other
approaches are based on modeling the surfaces as immersed in the 3D domain or treated implicitly, as, for example,
for level set formulations [3,14] or diffuse and resistive interface approaches [4,15].

In alternative to the above mentioned methods, we propose in this paper the use of Isogeometric Analysis
[16,17] for the numerical approximation of high order PDEs defined on surfaces. This choice is mainly motivated
by the ability of NURBS and B-splines to exactly represent several geometries of practical interest [18], especially in
industrial applications. Isogeometric Analysis (IGA) is a discretization method for approximating PDEs based on the
isogeometric paradigm, for which the same basis functions are used first for the geometrical description of the domain
and then for the numerical approximation of the solution of the PDEs [16,17]; in this respect, IGA was developed with
the goal of filling the gap between Computer Aided Design (CAD) and FEM, by providing a unified representation of
the geometrical design, the computational domain, and the approximation function spaces. One potential advantage
of IGA is thus its ability to directly use the description of the geometry for the spatial discretization of the PDEs,
without requiring the time-consuming process of generating a computational mesh, which often only represents an
approximation of the geometry. Indeed, in IGA many geometries of practical interest can be represented exactly at
the coarsest level of discretization, with refinement procedures not affecting the geometrical representation, but only
enhancing the approximation properties of the finite dimensional spaces.

While IGA is nowadays adopted for several geometrical representations [19,20], including T-splines [21], we focus
in this paper on B-splines and NURBS surfaces [18] built as single patches; indeed, open and closed surfaces can be
suitably defined by NURBS, as it is the case of the sphere. While the numerical approximation of second order PDEs
on surfaces by IGA has been extensively analyzed in [22], in this paper we focus instead on high order PDEs. Indeed,
in this respect, other than the geometric advantages, IGA allows the spatial approximation of PDEs of order 2m, with
m ≥ 1, by using the standard Galerkin formulation, without invoking the mixed formulations required by the isopara-
metric FEM [23] with the standard Lagrange polynomial basis functions for m ≥ 2. The possibility of using globally
Ck-continuous NURBS basis functions, with m−1 ≤ k ≤ p−1 and p the polynomial degree, yields IGA finite dimen-
sional spaces that are subspaces of the trial and test Hilbert spaces Hm required for PDEs of order 2m, with m ≥ 1 [24].
In addition, periodic NURBS basis functions can be built on surfaces with the goal of obtaining globally high order
continuous NURBS function spaces [25]. This in turn allows the construction of NURBS function spaces of the re-
quired regularity and thus the solution of high order PDEs defined on closed surfaces. In this paper we consider IGA
approximations of elliptic PDEs with high order Laplace–Beltrami operators, specifically of fourth and sixth order. We
study the convergence rate of the errors, for both PDEs on open and closed surfaces, and eigenvalue problems. Then, in
order to show the efficiency and robustness of our approach, we solve phase field problems, namely the Cahn–Hilliard
and phase field crystal equations on closed surfaces, both being high order, nonlinear, and time dependent PDEs.

This paper is organized as follows. In Section 2 we provide a quick introduction to the geometrical representation
of surfaces by means of NURBS. The mathematical tools needed to define high order PDEs on surfaces are described
in Section 3, together with the biharmonic and triharmonic Laplace–Beltrami problems and the corresponding
eigenvalue problems. In Section 4 the spatial discretization by IGA is introduced, together with a discussion about
the enforcement of global continuity of the basis functions on closed surfaces. Numerical results on benchmark
problems are reported and discussed in Section 5. The high order phase field problems, and specifically the fourth
order Cahn–Hilliard equation on the unit sphere and the sixth order phase field crystal equation on a torus, are solved
in Section 6. Finally, conclusions follow.

2. NURBS: Surfaces and function spaces

In this section we recall the basic notions of NURBS geometries and basis functions, with particular emphasis on
the representation of surfaces and construction of NURBS function spaces.
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