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a b s t r a c t

Rolling element bearings are widely used in various industrial machines, such as electric
motors, generators, pumps, gearboxes, railway axles, turbines, and helicopter transmis-
sions. Fault diagnosis of rolling element bearings is beneficial to preventing any unex-
pected accident and reducing economic loss. In the past years, many bearing fault
detection methods have been developed. Recently, a new adaptive signal processing
method called empirical wavelet transform attracts much attention from readers and engi-
neers and its applications to bearing fault diagnosis have been reported. The main problem
of empirical wavelet transform is that Fourier segments required in empirical wavelet
transform are strongly dependent on the local maxima of the amplitudes of the Fourier
spectrum of a signal, which connotes that Fourier segments are not always reliable and
effective if the Fourier spectrum of the signal is complicated and overwhelmed by heavy
noises and other strong vibration components. In this paper, sparsity guided empirical
wavelet transform is proposed to automatically establish Fourier segments required in
empirical wavelet transform for fault diagnosis of rolling element bearings. Industrial bear-
ing fault signals caused by single and multiple railway axle bearing defects are used to ver-
ify the effectiveness of the proposed sparsity guided empirical wavelet transform. Results
show that the proposed method can automatically discover Fourier segments required in
empirical wavelet transform and reveal single and multiple railway axle bearing defects.
Besides, some comparisons with three popular signal processing methods including
ensemble empirical mode decomposition, the fast kurtogram and the fast spectral correla-
tion are conducted to highlight the superiority of the proposed method.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Rolling element bearings are widely used in various industrial machines, such as electric motors, generators, pumps, gear-
boxes, railway axles, turbines, and helicopter transmissions [1]. Fault diagnosis of rolling element bearings is an emerging
topic and it is beneficial to preventing any unexpected accident and reducing economic loss. When there is a defect on
the surface of an outer race or inner race, impacts generated by rollers striking the defect excite the resonant frequencies
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of a structure and then repetitive transients are observed in a time domain [2]. Repetitive transients are relevant to a shaft
rotation frequency, the geometry of a bearing and the location of the defect. As a result, a ballpass frequency on outer race, a
ballpass frequency on inner race, a fundamental cage frequency and a ball spinning frequency can be used to identify various
bearing defects [3]. Because bearing fault related frequencies are often overwhelmed by heavy noises and other strong low-
frequency vibration components, signal processing methods are required to reveal bearing defects. Two main approaches are
spectral correlation [4] and envelope analysis [2,5]. The spectral correlation aims to build a spectral frequency and cyclic fre-
quency plane to locate resonant frequency bands and then identify bearing defect frequencies. Even though this approach is
powerful, it costs much calculation time and computer memory, and it is only suitable to off-line bearing fault diagnosis in
the past years prior to the recent development of the fast spectral correlation proposed by Antoni et al. [6] for cyclic spectral
analysis of bearing fault signals. The envelope analysis aims to determine resonant frequency bands and use a band-pass fil-
ter to retain one of the resonant frequency bands for further envelope analysis with demodulation. The main problem in the
envelope analysis is how to establish the resonant frequency bands. Because Randall et al. [7] clarified that squared envelope
analysis is equivalent to the integration of spectral correlation over spectral frequency, for the rest of this paper, the authors
mainly focus on reviewing some popular signal processing methods relevant to the envelope analysis, especially band-pass
filtering for envelope analysis with demodulation. For the state of the art relevant to spectral correlation, please refer to the
recent work done by Antoni et al. [6].

The first popular signal processing method is spectral kurtosis formulated by Antoni [8] and its realization called the fast
kurtogram [9]. The main idea of spectral kurtosis is to design some predefined band-pass filters and use kurtosis to pick up
the most informative signal among all signals processed by the band-pass filters. Following this idea, some variants including
the improved kurtogram [10], the enhanced kurtogram [11], the sparsogram [12], the infogram [13], multiscale clustering
grey infogram [14], etc., were proposed to realize the same idea. Given a fixed bandwidth, the adaptive spectral kurtosis
called Protrugram [15] was proposed to measure kurtosis from a frequency domain. To fuse some predefined band-pass fil-
ters and make spectral kurtosis adaptive, a window construction process by superposition was proposed by Wang and Liang
[16]. More improvements on spectral kurtosis and their applications to bearing fault diagnosis were reviewed by Wang et al.
[17]. One interesting recent work done by Borghesani et al. [18] revealed that kurtosis of an analytical signal obtained by
Hilbert transform is proportional to the sum of the amplitudes of the squared Fourier spectrum of the squared envelope,
which indicates that the spectral kurtosis has a very close relationship with cyclostationary analysis. This discover is consis-
tent with the early conclusion made by Randall et al. [7].

The second popular signal processing method is wavelet transform [19–21] and its variants including multiwavelet trans-
form [22], etc. This is because wavelet transform can be regarded an inner product operator [23] between an artificial wave-
let mother function and repetitive transients caused by a bearing defect. According to the convolution theorem, wavelet
transform can be also regarded as band-pass filtering by using an artificial mother function, which accelerates the calculation
time of wavelet transform [24]. If the scale of wavelet transform is properly chosen [25], one of the resonant frequency bands
of a structure is retained for envelope analysis with demodulation. Consequently, besides selection of wavelet filters [26,27],
optimization of a wavelet filter is another hot topic [28–31]. Recently, Wang and Tsui connected spectral kurtosis based fast
fault detection methods with wavelet transform and proposed dynamic Bayesian wavelet transform [32]. The main idea of
dynamic Bayesian wavelet transform is to use spectral kurtosis based fast fault detection methods to initialize the state space
model of wavelet parameters and then use dynamic Bayesian inference to find the optimal wavelet transform for extraction
of repetitive transients, such as extraction of bearing fault signals.

The third popular signal processing method is empirical mode decomposition and its variants [33,34]. Empirical mode
decomposition initially proposed by Huang et al. [35] is an adaptive signal processing method, which completely depends
on the local maxima and minima of the amplitudes of a temporal signal. To solve the mode mixing problem, an improvement
called ensemble empirical mode decomposition was proposed by Wu and Huang [36]. More improvements on empirical
mode decomposition and their applications to bearing fault diagnosis were reviewed by Lei et al. [34]. Empirical mode
decomposition and its variants can be regarded as adaptive band-pass filters [37]. The main problem of empirical mode
decomposition and ensemble empirical mode decomposition for bearing fault diagnosis is that the frequency band of an
intrinsic mode function (IMF) is often too wide so that heavy noises and other unwanted strong vibration components over-
whelm the resonant frequency bands of a structure. To solve this problem, preprocessing methods including wavelet packets
[38,39], spectral kurtosis [40], etc. are often required. Another main problem of empirical mode decomposition and ensemble
empirical mode decomposition for bearing fault diagnosis is extensive calculation time. Unlike the aforementioned spectral
kurtosis and wavelet transform, empirical mode decomposition and ensemble empirical mode decomposition cannot utilize
the fast Fourier transform and the convolution theorem to accelerate their calculation time. As the length of a signal
increases, searching for the local maxima and minima of the amplitudes of a signal is extensive. Besides, many iterations
are used in empirical mode decomposition and ensemble empirical mode decomposition to achieve the definition of an IMF.

Inspired by wavelet transform and the adaptiveness of empirical mode decomposition, recently, Gilles [41] proposed
empirical wavelet transform. The main idea of empirical wavelet transform is to determine Fourier segments of a signal
and then design a series of wavelet filters to decompose the signal to several sub-signals. If Fourier segments are automat-
ically determined, empirical wavelet transform becomes adaptive and it owns the characteristics of wavelet transform and
the adaptiveness of empirical mode decomposition. One empirical rule for making empirical wavelet transform adaptive is to
rely on the local maxima of the amplitudes of the Fourier spectrum of a signal and then use the center of the locations of two
adjacent local maxima to determine Fourier segments of the signal [42]. Since heavy noises and other unwanted strong
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