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a b s t r a c t

The estimation of modal parameters from a set of noisy measured data is a highly judg-
mental task, with user expertise playing a significant role in distinguishing between esti-
mated physical and noise modes of a test-piece. Various methods have been developed
to automate this procedure. The common approach is to identify models with different
orders and cluster similar modes together. However, most proposed methods based on this
approach suffer from high-dimensional optimization problems in either the estimation or
clustering step. To overcome this problem, this study presents an algorithm for autono-
mous modal parameter estimation in which the only required optimization is performed
in a three-dimensional space. To this end, a subspace-based identification method is
employed for the estimation and a non-iterative correlation-based method is used for
the clustering. This clustering is at the heart of the paper. The keys to success are correla-
tion metrics that are able to treat the problems of spatial eigenvector aliasing and nonuni-
que eigenvectors of coalescent modes simultaneously. The algorithm commences by the
identification of an excessively high-order model from frequency response function test
data. The high number of modes of this model provides bases for two subspaces: one for
likely physical modes of the tested system and one for its complement dubbed the sub-
space of noise modes. By employing the bootstrap resampling technique, several subsets
are generated from the same basic dataset and for each of them a model is identified to
form a set of models. Then, by correlation analysis with the two aforementioned subspaces,
highly correlated modes of these models which appear repeatedly are clustered together
and the noise modes are collected in a so-called Trashbox cluster. Stray noise modes
attracted to the mode clusters are trimmed away in a second step by correlation analysis.
The final step of the algorithm is a fuzzy c-means clustering procedure applied to a three-
dimensional feature space to assign a degree of physicalness to each cluster. The proposed
algorithm is applied to two case studies: one with synthetic data and one with real test
data obtained from a hammer impact test. The results indicate that the algorithm success-
fully clusters similar modes and gives a reasonable quantification of the extent to which
each cluster is physical.
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1. Introduction

1.1. Pertinent literature

Over the last decades, much effort has been put to develop efficient algorithms for identification of the modal parameters
using time or frequency domain data [1,2]. A central problem in most of these algorithms is to determine the true model
order to capture the physical modes of the test-piece. However, this model order determination often demands considerable
interaction from an experienced user. This hinders the use of developed modal analysis techniques for the applications
which require a periodic estimation of the modal parameters like continuous health monitoring of structures.

In the framework of system identification, there exists an extensive literature for order estimation of linear dynamical
models. The Akaike Information Criterion (AIC) [3] for maximum likelihood estimator and the Singular Value Criterion
(SVC) [4] for subspace-based methods are two such examples of model order selection criteria. They share the idea of com-
paring the significance of the inclusion of yet another mode for increasing the prediction capability of the model with a pen-
alty cost of including it. Such cost is somewhat sensitive to the choice of specific user parameters. Although these criteria can
perform well for model validation in general, they often provide a slight overestimation of the model order [5,6] and are also
inadequate to detect and reject the physically irrelevant modes which often appear in the identified models [7]. Such irrel-
evant modes are here called noise modes without considering of their origin.

In the contrast, in the modal analysis community, the primary interest is often in the physical relevance of the individual
modes of the identified model rather than a related model’s prediction capacity. Therefore, the common practice is to iden-
tify a model with an order that is much higher than motivated by physics to ensure that all physical eigenmodes within the
frequency band of interest are safely captured [8–10]. However, this inevitably results in the appearance of noise modes in
the identified model, i.e.,modes which are present in the model due to measurement noise or computational imprecision but
have no relevance to the physics of the tested system. Various tools have been developed to detect and eliminate such noise
modes from a model. The most widespread tool is undoubtedly the so-called stabilization diagram [11,12]. This diagram is
constructed using estimated eigenfrequencies of models with increasing order. Ideally, for a physical mode, the estimated
eigenfrequencies show up with the same value for increasing model order while for a noise mode they do not [6]. However,
the interpretation of the stabilization diagram is an art which often requires a lot of user interaction. Specifically, for highly
noisy data its outcome highly depends on user decisions.

In recent years, many studies attempted to automate the interpretation of stabilization diagram or the modal parameter
estimation algorithm in general [13–17]. Owing to the fact that analyzing the stabilization diagram reduces to finding modes
with similar properties, the majority of automation strategies borrowmethods from statistical machine learning with super-
vised and unsupervised learning algorithms. Goethal et al. [12] proposed to utilize a supervised learning algorithm to auto-
mate the interpretation of stabilization diagrams. In their study, a hierarchical clustering algorithm groups similar modes of
a stabilization diagram together. Then, the final decision on the nature of a cluster, being either physical or a noise artifact, is
made by a self-learning Support Vector Machine (SVM) algorithm. Their hypothesis is that once the SVM algorithm is suf-
ficiently trained from sets of data obtained from designed synthetic experiments, the algorithm will automatically classify
physical modal parameters for real test data.

Special attention has been given to unsupervised learning algorithms. Hierarchical and centroid-based clustering1 algo-
rithms are two examples of this type of learning algorithms. Hierarchical clustering starts by assigning one cluster to each data
point in a stabilization diagram. Then, it proceeds by merging the closest clusters together until the distance between the result-
ing clusters exceeds a user-defined threshold. Finally, physical modes are defined by clusters in which the number of modes is
larger than a user-specified threshold. A considerable research effort has been made to develop appropriate distance measure
for the hierarchical clustering. Magalhães et al. [18] suggested a distance measure which is based on the eigenfrequency differ-
ence and the Modal Assurance Criterion (MAC) value. Allemang et al. [19] used the MAC value between pole-weighted mode
shapes as the distance measure between clusters. Goethals et al. [12] proposed a distance measure based on the difference
of damping ratios and eigenfrequencies.

Other examples of unsupervised learning algorithms are centroid-based clustering schemes such as k-means and fuzzy c-
means. In these clustering approaches, a central point/vector (centroid) serves as a representative for each cluster, although
it may not be a member of data points in a stabilization diagram. Then the data points are grouped into k clusters such that
the squared distances from the cluster centroids are minimized. The main drawback of this approach is that the number of
clusters is assumed to be known a priori, which is often not the case in practice. Scionti and Lanslots [20] employed fuzzy c-
means clustering to directly group the existing modes in the stabilization diagram into a predefined number of clusters. Van-
landuit et al. [6] and Verboven et al. [8] proposed a frequency-domain Maximum Likelihood Estimator (MLE) to estimate the
modal parameters using a single high model order n. Subsequently, they grouped the estimated modes into two classes of
physical and noise modes using a fuzzy c-means clustering algorithm. Reynders et al. [7] automates the analysis of stabiliza-
tion diagrams using three steps of clustering. First, a centroid-based clustering algorithm is employed to remove the noise
modes from the stabilization diagram. Secondly, a hierarchical clustering algorithm is employed to group similar modes that

1 In general, clustering refers to the task of subdividing a set of data points into subsets such that the (in some sense) similar data points are grouped
together.
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