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Abstract

A node-to-node contact scheme, which is applicable for three-dimensional contact analyses involving large deformations, is
developed with the aid of polyhedral elements. The key issue is to transform nonmatching meshes into matching meshes in a
seamless manner. Because polyhedral elements are allowed to have arbitrary numbers of polygonal faces and nodes, they can be
used as transition elements for coupling nonmatching meshes. In this paper, the polyhedral elements make it possible to always
maintain node-to-node contact during the contact deformation. The present approach guarantees that the patch test is passed and the
nonpenetration condition is satisfied, and hence it yields smoother contact pressure with faster convergence than the conventional
node-to-surface or surface-to-surface contact scheme.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The engineering approaches to contact mechanics may be categorized into two groups: the Lagrange multiplier
methods and penalty methods [1]. In the classical Lagrange multiplier methods, nonpenetration condition is exactly
fulfilled. However, a system matrix does not meet positive definiteness and additional variables are introduced. In
contrast, the penalty method does not need any additional variables and positive definiteness of the system matrix
is retained. However, the constraint conditions are satisfied only approximately according to the size of the penalty
parameter, while a large penalty parameter impairs the condition number of a system matrix [2]. As a compromise
between these two schemes, Arrow and Solow [3] suggested Augmented Lagrangian method. The augmented
Lagrange method to treat frictional contact problems has been proposed by Simo and Laursen [4]. Furthermore, Mijar
and Arora [5,6] applied the augmented Lagrange method for contact problems involving large sliding and nonlinear
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materials behaviors. Many studies on the augmented Lagrangian method show that it leads to accurate solutions just
with a modest increase of computation compared with the penalty method. Thus it has established itself as one of the
major methodologies for treating the contact condition in contact mechanics.

Another important issue in contact mechanics is how to handle nonconforming or nonmatching discretization,
resulting from slip along contact interfaces during contact deformation. A straightforward approach to dealing with
the occurrence of nonmatching meshes in contact mechanics is to transform the nonmatching meshes to matching
meshes, and a remeshing scheme is employed for this [7-9]. However, this leads to a drastic increase in computing
load due to the continuous remeshing and the subsequent recovery of the state variables when it comes to the cases
wherein the interface configuration continues to change as in fluid—solid interaction (FSI) problems and in contact
mechanics. Among others, the so-called variable-node element (VNE) approach [10-15] was suggested to overcome
this shortcoming. In this approach, nodes are added on any appropriate points on each edge of a two-dimensional
element or on any suitable place on each face of a three-dimensional element to transform a nonmatching mesh
to a matching mesh [10-12]. Furthermore, the VNE was extended for application to FSI problems [13,14], and
the smoothed finite element method (SFEM) was applied for elastic—plastic analysis [15]. Particularly polyhedral
elements lead to useful three-dimensional variable-node elements [16,17], adapting themselves to complex geometries
as they are allowed to have generic element shape of an arbitrary number of faces.

According to the mesh configuration on contact surface, conventional contact approaches are categorized into
node-to-node, node-to-surface and surface-to-surface contact schemes. The node-to-node contact scheme, which was
suggested by Francavilla and Zienkiewicz [18], is applicable in the case of conforming or matching meshes across
contact interface. The advantage of this method is that the contact patch test is passed accurately, and so uniform
contact pressure is exactly transferred across the contact interface. However, this approach is not applicable without
remeshing if contact deformations are not small as finite tangential slip generates nonconforming or nonmatching
mesh across contact interfaces.

Among well-accepted contact approaches the node-to-surface scheme is a general scheme suggested by Hughes
et al. [19] To remedy its shortcoming that it does not pass the contact patch test and requires a large number of
equilibrium iterations for nonconforming meshes [1,20], Crisfield [21] suggested a contact formulation by combining
linear shape functions with quadratic shape functions. In addition, some work has been reported to make the node-
to-surface approach pass the patch test by employing virtual slave nodes by Zavarise and De Lorenzis [22]. Many
studies [23-26] have attempted to resolve this issue with the aid of various schemes such as master/slave strategy and
two-layer approaches. The contact domain method [27,28] guarantees that the patch test is passed and is rather stable.

Another widely used approach is the surface-to-surface scheme, proposed by Simo et al. [29]. The surface-to-
surface approach meanwhile provides solutions with high accuracy and guarantees that the patch test is passed. The
mortar method, the basic concept of which originates from domain decomposition for nonconforming mesh [30], is
representative of the surface-to-surface scheme. The scheme was first applied by Belgacem et al. [31] for frictionless
multibody contact. In the mortar methods [32-34], traction continuity across the contact interface is enforced in the
weak form with the aid of a Lagrange multiplier. This makes the system matrix positive definite, but the constraint is
enforced in the sense of the weak form, and thus needed is the satisfaction of inf—sup condition, i.e. Babuska—Brezzi
condition [34,35]. Presently, the mortar method is widely employed for diverse contact analyses [33,36-43]. Rebel
et al. [44] introduced a virtual medium in contact interface using Lagrange multipliers.

A typical method for dealing with nonmatching contact interfaces is Nitsche discretization [45,46]. Contact
analyses using Nitsche discretization pass the patch test and they are capable of accommodating large deformations.
However, implementation of these methods is very complicated, especially in three-dimensional problems [47].

To deal with nonmatching contact surfaces in an efficient manner, Kim et al. [48] proposed a node-to-node contact
strategy that can directly transform nonmatching meshes, caused by slip during the contact of dissimilar bodies,
into matching meshes by inserting new additional nodes to elements along the contact interfaces. At the contact
interface, all elements possessing the additional nodes are replaced by variable-node elements (VNEs) [10-12].
This novel scheme leads to fast convergence in equilibrium iterations compared with the conventional node-to-
surface contact scheme. Kim et al. [48] treated only linear elastic contact mechanics within the realm of the two-
dimensional infinitesimal elastic deformations. Recently, this approach has been extended to two-dimensional contact
problems involving elastic—plastic large deformations [49]. The present paper is concerned with the further extension
of this approach to three-dimensional contact problems with possibly large elastic deformations. The node-to-node
scheme for the two-dimensional contact problems in the previous study [49] is extended to the case of the three-



Download English Version:

https://daneshyari.com/en/article/497665

Download Persian Version:

https://daneshyari.com/article/497665

Daneshyari.com


https://daneshyari.com/en/article/497665
https://daneshyari.com/article/497665
https://daneshyari.com

