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a b s t r a c t

In structural dynamics, the prediction of the response of systems with localized nonlinear-
ities, such as friction dampers, is of particular interest. This task becomes especially cum-
bersome when high-resolution finite element models are used. While state-of-the-art
techniques such as Craig-Bampton component mode synthesis are employed to generate
reduced order models, the interface (nonlinear) degrees of freedom must still be solved
in-full. For this reason, a new generation of specialized techniques capable of reducing lin-
ear and nonlinear degrees of freedom alike is emerging. This paper proposes a new tech-
nique that exploits spatial correlations in the dynamics to compute a reduction basis.
The basis is composed of a set of vectors obtained using the Jacobian of partial derivatives
of the contact forces with respect to nodal displacements. These basis vectors correspond
to specifically chosen boundary conditions at the contacts over one cycle of vibration. The
technique is shown to be effective in the reduction of several models studied using multi-
ple harmonics with a coupled static solution.
In addition, this paper addresses another challenge common to all reduction techniques:

it presents and validates a novel a posteriori error estimate capable of evaluating the qual-
ity of the reduced-order solution without involving a comparison with the full-order
solution.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of structures constrained through frictional contacts can be very complex due to the nonlinear nature of dry
friction [1]. Often, the response is assumed to be periodic so that harmonic balance methods (HBM) can be used in the fre-
quency domain. Methods to compute the steady-state response can use HBM together with alternating frequency-time (AFT)
approaches for systems with friction contacts [2–6].

Spatial reduction techniques like the proper orthogonal decomposition can be used to model the physical DOFs of the
structure (i.e. the nodal DOFs of the FE model) as a linear superposition of shape functions [7]. However these techniques
require the solution of the full system to be computed at given time instants, and this may be unfeasible for
high-resolution FE models. Another approach which also requires the nonlinear system to be solved in advance in order
to generate the ROM is described for turbine bladed disks applications in [8].
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Nomenclature

Abbreviations
AFT Alternating Frequency Time method
CB-CMS Craig Bampton-Component Mode Synthesis
DoF(s) Degree(s) Of Freedom
FFT Fast Fourier Transform
FE Finite Elements
FO Full Order
FR Full Reduction
HBM Harmonic Balance Method
IFFT Inverse Fast Fourier Transform
JP Jacobian Projection
NLR NonLinear Reducion
RO(M) Reduced Order (Model)

Vectors and matrices
D dynamic stiffness matrix
f vector of forces
U reduction basis
g vector of forces in reduced coordinates - FR
H reduced dynamic stiffness matrix - NLR
J Jacobian matrix (multi-harmonic)bK multi-harmonic matrix of partial derivatives of contact forces with respect to displacements
l vector of forces in reduced coordinates - NLR
KJC diagonal matrix of eigenvalues
M;C;K mass, structural damping and stiffness matrices
MJ;CJ;KJ multi-harmonic mass, structural damping and stiffness matrices, harmonics: 0-H
MJC;CJC;KJC multi-harmonic mass, structural damping and stiffness matrices after static condensation, harmonics: 1-H

(after static condensation)
p vector of displacements in reduced coordinates - FR
W mode used to compute the boundary conditions necessary to the definition of U
q vector of displacements
R rotation matrix
r multi-harmonic vector of residuals
s vector of displacements in reduced coordinates - NLR
S diagonal matrix of singular values
U;V matrices of left and right singular vectors respectively
VJC multi-harmonic eigenvectors matrix

Additional subscripts
cond conditioned
C contact
E external
i iteration step
ST relative to a full stick linear system
� relative to a posteriori error estimate
L relative to linear DoFs
N relative to nonlinear DoFs
ROM relative to the reduced order model

Additional superscripts
h harmonic index h, both real and imaginary part
h;I harmonic index h, imaginary part
h;R harmonic index h, real part
ðÞ referred to a complex-valued quantity where real and imaginary parts have been split into separate entries of

a matrix or vector
T transpose
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