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a b s t r a c t

Random set theory is a general framework which comprises uncertainty in the form of
probability boxes, possibility distributions, cumulative distribution functions, Dempster-
Shafer structures or intervals; in addition, the dependence between the input variables
can be expressed using copulas. In this paper, the lower and upper bounds on the proba-
bility of failure are calculated by means of random set theory. In order to accelerate the cal-
culation, a well-known and efficient probability-based reliability method known as subset
simulation is employed. This method is especially useful for finding small failure probabil-
ities in both low- and high-dimensional spaces, disjoint failure domains and nonlinear
limit state functions. The proposed methodology represents a drastic reduction of the
computational labor implied by plain Monte Carlo simulation for problems defined with
a mixture of representations for the input variables, while delivering similar results.
Numerical examples illustrate the efficiency of the proposed approach.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The treatment of uncertainties and the calculation of the probability of limit state violations are of primary concern in
modern engineering systems. Different modes of failure can be grouped in the so-called limit state function (LSF)
g : X ! R, which depends on a set of uncertain system parameters x 2 X#Rd. In the framework of reliability assessment,
the failure surface gðxÞ ¼ 0 splits the X� space in two domains, namely the safe set S ¼ fx 2 X : gðxÞ > 0g and the failure
set F ¼ fx 2 X : gðxÞ 6 0g. The probability measure of F#X, also known as the probability of failure, is defined as

Pf ¼
Z
X

IF x½ �dFXðxÞ ¼
Z
X

I gðxÞ 6 0½ �dFXðxÞ ð1Þ

where, FXðxÞ is the joint cumulative distribution function (CDF) of the input variables and I½�� stands for the indicator func-
tion, which takes the values IF x½ � ¼ 1 when either x 2 F or the condition in square brackets is true, and IF x½ � ¼ 0 otherwise.
When FXðxÞ is sufficiently differentiable, the associated joint probability density function (PDF) f XðxÞ exists, and in this case
Eq. (1) can be expressed also as

Pf ¼
Z
X

IF x½ �f XðxÞdx ¼
Z
X

I gðxÞ 6 0½ �f XðxÞdx:
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One of the main drawbacks of applying the probabilistic approach to reliability analysis of structures is that the CDFs of the
input variables x 2 X are usually known with imprecision. This is normally due to the lack of sufficient data for fitting the
model to each input random variable. Even if the information is plenty, there remains the problem of the high sensitivity of
the usually small probabilities of failure to the parameters of the CDFs (see e.g. [23,35]). In addition, the information about
the input variables, is not always given as joint CDFs, but they can be expressed as well, in terms of probability boxes, pos-
sibility distributions, Dempster-Shafer structures, intervals, among other representations of uncertainty. All those reasons
complicate the application of the efficient methods that exist in the realm of probability theory for the estimation of the reli-
ability of structural and mechanical systems.

These difficulties have fostered the research on alternative methods (coined under the term of imprecise probabilities) for
incorporating uncertainty in the analysis of engineering systems, such as possibility theory, info-gap theory, convex models,
interval analysis, ellipsoid modeling, credal sets, Dempster-Shafer evidence theory, random sets, random fuzzy sets, fuzzy
random sets, probability boxes, sets with parametrized probability measures, among other methods. The reader is referred
to the state-of-the-art review [12] and references within for further discussion and additional information.

In this context, random set theory appears as a unifying framework which comprises several types of uncertainty repre-
sentations, either aleatory or epistemic. This approach allows us to estimate the lower and upper bounds on the probability
of events, and thus, it can be used to bound the probability of failure. Within the random set approach to structural relia-
bility, research has been done for introducing the epistemic uncertainty in the probabilistic models. In this direction, Tonon
[44] used random set theory to calculate the reliability bounds for the challenge problem proposed by Oberkampf et al. [36].
Du [19] developed a methodology, termed the unified uncertainty analysis method for reliability assessment of structural
and mechanical systems. The approach uses a double loop optimization process which contains probabilistic and interval
analysis, and employs the first-order reliability method (FORM) for the solution of the reliability problem. Similarly to the
sampling methods developed in Alvarez [1,3], Zhang and co-workers proposed the so-called interval Monte Carlo simulation
method [52,51]; also they developed an interval importance sampling method [49] and an interval quasi-Monte Carlo
method [50]. Xiao et al. [47] proposed an efficient saddle-point approximation to speed up the results of the interval Monte
Carlo simulation method. Alvarez and Hurtado [5] proposed a method based on the reliability plot to estimate in a parsimo-
nious way the lower and upper probabilities of failure. Recently, Yang et al. [48] used a surrogate kriging model to accelerate
the computations of the failure probability bounds.

As it will be seen in the paper, the estimation of the lower and upper probabilities of failure can be postulated as two
standard reliability assessment problems, and consequently, any method for the estimation of the probability of failure that
only uses probabilistic information can be applied. In particular, we will illustrate this methodology using one of the most
popular and efficient methods, namely, subset simulation [8,9]. During the last decade, subset simulation has established
itself as one of the leading algorithms for the estimation of failure probabilities. Therefore, the engineering research commu-
nity has focused on the enhancement and generalization of the method; some of the most recent contributions include:
Bayesian post-processor for subset simulation [53], combination of subset simulation with machine learning-based surro-
gate models [13,37], and the subset simulation enhancements proposed by Papaioannou et al. [38] and Au and Patelli
[11]. Perhaps one of the most significant developments was proposed by Walter [46], who applied the concept of moving
particles; the approach presents two main results in the context of subset simulation (referred to as multilevel splitting):
first, the number of samples required to populate F is considerably reduced, and second, the adaptive selection of the inter-
mediate levels is no longer required since by construction the nested subsets do not exist anymore.

In this contribution, we will use subset simulation in conjunction with random set theory in order to estimate the upper
and lower bounds on the probability of failure when the input variables are defined in terms of probability boxes, possibility
distributions, CDFs, Dempster-Shafer structures, or intervals. In fact, the proposed approach is so general that any method for
assessing the probability of failure can be used as well.

The plan of this work is as follows. The document begins with a succinct introduction to copulas and random sets in Sec-
tions 2 and 3, respectively. Then in Section 4, we introduce the mathematical formulation for the estimation of the proba-
bility of failure and its relationship with random set theory. Specifically, we will see that the calculation of the lower and
upper probabilities of failure will correspond to the evaluation of two integrals that compute the probability of failure for
two different LSFs. Section 5 will introduce the Monte Carlo simulation method for the estimation of the probability of fail-
ure, and Section 6 will introduce the subset simulation algorithm. The proposed methodology will be illustrated in Section 7;
there, we explain how to use subset simulation to estimate the lower and upper probabilities of failure provided by random
set theory after applying a suitable isoprobabilistic transformation. Section 8 demonstrates the advantages of the proposed
approach with three numerical examples. The paper ends with the discussion of results, conclusions, some open problems
and the corresponding acknowledgements.

2. An introduction to copulas

2.1. Overview

This concise review of some important concepts about copulas follows the exposition presented in Nelsen [33]. A copula C

is a d-dimensional CDF, C : ½0;1�d ! ½0;1�, whose univariate marginal CDFs are uniform on the interval ½0;1�. The main
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