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a b s t r a c t

Empirical mode decomposition (EMD) is a powerful technique for separating the transient
responses of nonlinear and nonstationary systems into finite sets of nearly orthogonal
components, called intrinsic mode functions (IMFs), which represent the dynamics on dif-
ferent characteristic time scales. However, a deficiency of EMD is the mixing of two or
more components in a single IMF, which can drastically affect the physical meaning of
the empirical decomposition results. In this paper, we present a new approached based
on EMD, designated as wavelet-bounded empirical mode decomposition (WBEMD), which
is a closed-loop, optimization-based solution to the problem of mode mixing. The opti-
mization routine relies on maximizing the isolation of an IMF around a characteristic fre-
quency. This isolation is measured by fitting a bounding function around the IMF in the
frequency domain and computing the area under this function. It follows that a large
(small) area corresponds to a poorly (well) separated IMF. An optimization routine is devel-
oped based on this result with the objective of minimizing the bounding-function area and
with the masking signal parameters serving as free parameters, such that a well-separated
IMF is extracted. As examples of application of WBEMD we apply the proposed method,
first to a stationary, two-component signal, and then to the numerically simulated
response of a cantilever beam with an essentially nonlinear end attachment. We find that
WBEMD vastly improves upon EMD and that the extracted sets of IMFs provide insight into
the underlying physics of the response of each system.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The empirical mode decomposition (EMD) proposed by Huang et al. [1] is a powerful method for decomposing oscillatory
signals into a finite basis of nearly orthogonal, monochromatic intrinsic mode functions (IMFs) each possessing a character-
istic time scale. EMD is highly suitable for application to nonlinear and nonstationary processes where linear decomposition
methods fail to capture the complex nonlinear dynamics. EMD decomposes an oscillatory signal, uðtÞ, with a sifting
algorithm consisting of the following steps:
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(i) Determine all extrema of uðtÞ.
(ii) Compute two envelopes, eminðtÞ and emaxðtÞ; by spline interpolating the minima and maxima of the signal.
(iii) Compute the average curve between the two envelopes, RðtÞ ¼ ðemaxðtÞ þ eminðtÞÞ=2.
(iv) Extract the remainder signal, c1ðtÞ ¼ uðtÞ � RðtÞ.

Apply steps (i) through (iv) iteratively to c1ðtÞ until the maximum value of RðtÞ is less than a prescribed tolerance, s.
Upon satisfying (iv), c1ðtÞ is regarded as the first IMF of uðtÞ and possesses the highest characteristic frequency. A second

IMF can be extracted by applying the algorithm to the difference z1ðtÞ ¼ uðtÞ � c1ðtÞ: By applying the algorithm recursively,
xðtÞ can be sequentially decomposed into nearly orthogonal IMFs that satisfy

uðtÞ ¼
XN
i¼1

ciðtÞ þ RNþ1ðtÞ;maxðRNþ1ðtÞÞ < s: ð1Þ

The objective of EMD, from an applications viewpoint, is to extract IMFs that are physically and mathematically represen-
tative of the original time series. Although the mathematical and physical significance of IMFs have been studied in detail [2–
4], applying EMD often results in more IMFs than the number of characteristic time scales actually present (i.e., the method
yields spurious, non-physically meaningful IMFs), and care must be taken to select only the physically meaningful IMFs from
the extracted ones [1,5,6]. Other tools, such as the wavelet transform (WT) [7], provide great insight into the characteristic
frequencies and their temporal behavior. These tools should be applied to identify the characteristic frequencies before
applying EMD.

In addition to spurious IMFs, EMD suffers from a lack of a theoretical foundation; orthogonality between IMFs; unique-
ness in the decomposition; and mode mixing where EMD results in multi-frequency IMFs. Huang et al. [5] first described

Nomenclature

A amplitude ratio between y1 and y2
Âi the discrete set of instantaneous amplitudes for the ith set of IMFs
B area under bounding function
~Ci maximum wavelet transform of an IMF ci
HTf�g Hilbert transform
MWTf�g maximum wavelet transform
R average of minima and maxima envelopes
WTf�g wavelet transform
Z wavelet transform of z
~Z maximum wavelet transform of z
b bounding function
cmi the ith IMF extracted at the mth measurement location
eminðemaxÞ

the envelope created by spline interpolating minima (maxima)
f 1 frequency of y2
k frequency ratio between xi and xiþ1
s masking signal
u an oscillatory signal in time (measured or simulated)
y two-component signal composed of y1 and y2
zi the difference between u and the sum of all IMFs 1 through i
Ur:p phase variable defined for a ratio of r : p
X upper frequency limit for computing area under bounding function
a parameter that adjusts the masking signal amplitude
b parameter that adjusts the masking signal frequency
c minimum amplitude of a trial IMF at the characteristic frequency
d maximum amplitude of a trial IMF away from the characteristic frequency
e parameter that controls the minimum value of the bounding function
g parameter that adjusts the bounding function peak amplitude
/ parameter that adjusts the width of the bounding function
ĥiðx̂iÞ instantaneous phase (frequency) of an IMF ci
wx;t mother wavelet function
xi the ith characteristic frequency
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