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Abstract

We propose a new finite element method for Helmholtz equation in the situation where an acoustically permeable interface
is embedded in the computational domain. A variant of Nitsche’s method, different from the standard one, weakly enforces the
impedance conditions for transmission through the interface. As opposed to a standard finite-element discretization of the prob-
lem, our method seamlessly handles a complex-valued impedance function Z that is allowed to vanish. In the case of a vanishing
impedance, the proposed method reduces to the classic Nitsche method to weakly enforce continuity over the interface. We show
stability of the method, in terms of a discrete Garding inequality, for a quite general class of surface impedance functions, provided
that possible surface waves are sufficiently resolved by the mesh. Moreover, we prove an a priori error estimate under the assump-
tion that the absolute value of the impedance is bounded away from zero almost everywhere. Numerical experiments illustrate the
performance of the method for a number of test cases in 2D and 3D with different interface conditions.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In the context of acoustic or electromagnetic wave propagation, material properties of domain boundaries or thin
embedded interfaces are commonly characterized in terms of a surface impedance Z. For governing equations written
in second-order form and in frequency domain, the surface impedance condition is straightforward to enforce weakly
as a natural condition in the corresponding variational form. The surface impedance then appears in the denominator
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of a boundary term in variational form. The limit Z — 0 corresponds to a Dirichlet condition, so the case Z = € for
a small € > 0 can be considered as an approximate treatment of a Dirichlet condition.

This approximation corresponds to the penalty method championed by Babuska [1] to impose Dirichlet boundary
conditions in the context of finite element methods. Viewed as a numerical implementation of the Dirichlet condition,
this penalty method is simple to use but suffers from the fact that it is not consistent with the equation for the exact
condition, which mean that the method will not be optimal-order accurate in general. This method may also yield
ill-conditioned system matrices, particularly for higher order elements. An improvement that addresses these issues
was suggested by Nitsche [2], and his ideas have been the basis for a wide range of further developments. Interior-
penalty discontinuous Galerkin methods [3] use the ideas of Nitsche to enforce inter-element continuity. Nitsche’s
approach can also be used for domain decomposition and as a mortar method for meshes that do not match node-wise
across an interface [4,5]. Juntunen & Stenberg [6] extended Nitsche’s method, designed for pure Dirichlet conditions,
to a general class of mixed boundary conditions. Hansbo & Hansbo [7] introduced a Nitsche-type method for static
linear elasticity in order to handle imperfect bounding, modeled with elastic spring-type conditions, across an em-
bedded interface. Recently, there has also been an intense development of so-called cut finite element techniques,
where interfaces, typically supporting jumps in the solution across the interface, are allowed to cut arbitrarily across
a background mesh [8]. The transmission conditions at the interface are in these methods handled by variations of the
idea by Nitsche.

In this article, we present a Nitsche-type method to impose a surface impedance function on an interface embedded
with in a domain, where the wave propagation is governed by the Helmholtz equation for the acoustic pressure.
The method is conceptually similar to the approach of Hansbo & Hansbo [7] but accommodated to the special
features of this wave propagation problem. Our method is designed to seamlessly handle a complex-valued impedance
function that is allowed to vanish, for which the method reduces to the symmetric interior-penalty method to enforce
interelement continuity. A condition that requires particular attention is when the surface impedance is stiffness
dominated. The imaginary part of the surface impedance is then negative, which implies that surface waves can
occur in a layer close to the impedance layer. The possibility of surface waves complicates the analysis of our method.
Nevertheless, we are able to show stability of the method, in terms of a discrete Garding inequality, for a quite general
class of surface impedance functions, under the condition, if applicable, that the surface waves are resolved by the
mesh.

2. Problem statement
2.1. Linear acoustics in the presence of impedance surfaces

We consider time-harmonic acoustic wave propagation in still air. The acoustic pressure and velocity are assumed
to be given by P(x,t) = Re el px)and U(x,t) = Re 'y (x), where @ € R is the angular frequency, and where the
acoustic pressure and velocity amplitude functions p and u satisfies the linear, time-harmonic wave equation, which
in first-order form can be written

iwpu +Vp =0, (1a)
iw
c

where p is the static air density and ¢ the speed of sound.

We assume that there is a smooth, orientable surface ' located inside the domain, and we denote by n; and
ny = —nj the two unit normal fields on each side of the surface. We fix an orientation of the surface by selecting
one of these normals and denoting it by 7. We assume that an acoustic flux n - u is transmitted (leaking) through the
surface such that the acoustic flux at each point is proportional to the local acoustic pressure jump over the surface.
The pressure may thus be discontinuous across the surface although n - u is continuous. Note that this model excludes
transversal wave propagation in the surface material itself, since the model is strictly local. We define p;, i = 1, 2
as the limit acoustic pressure when approaching the surface from the interior of the side for which n; is the outward-
directed normal; that is, forx € I,

pi(x) = lim p(x —sn;(x)) (2)
s—0t
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